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We have previously exploited various chemometric algorithms for the direct determination of cholesterol and 

polyunsaturated fatty acid (PUFA) molar concentrations in synthetic mixtures and human serum. The simple 

colorimetric assay used is rapid, rugged, inexpensive, and specific to the -CH=CH-CH2- group that accomplishes, 

in a single assay the simultaneous quantitation of cholesterol, ω-3 (methyl esters of linolenic, eicosapentaenoic 

(EPA) and docosahexaenoic (DHA) fatty acids), and ω-6 (methyl esters of linoleic, conjugated linoleic (CLA), and 

arachidonic fatty acids). Previously, ridge regression (RR), P-matrix regression (PM), principal component 

regression (PCR), and partial least squares (PLS2) successfully out-performed the K-matrix regression (KM) 

approach when applied to the study of prepared mixtures (synthetic sera) in chloroform solutions. In this paper, 

partial least squares in the form of PLS1 is investigated and applied to quantify molar concentrations of 

cholesterol and PUFAs in actual human serum samples. Results show that PLS1 yielded lesser root mean square 

errors of prediction in the calibration model, and molar concentrations comparing quite equally well with the 

gas chromatography-mass spectrometry (GC-MS) procedures. 

 
* Corresponding author: Gerard G. Dumancas, Department of Chemistry, Oklahoma State University, 002 Physical Science Building, Stillwater, 

OK 74078, USA. tel.: +1-405-744-5948; fax: +1-405-744-6007; email: gerard.dumancas@okstate.edu  

 
 

 

Introduction 

 

In the modern era, biomedical research plays a 

very critical role in human health. Within the 

biomedical research area, scientists are 

searching for new biomarkers that would serve 

to identify the causes of obesity, coronary heart 

disease, diabetes, hypercholesterolemia, and 

cancer among others. Cholesterol and PUFAs 

are among the biomarkers associated with the 

previously mentioned diseases. PUFAs in the 

diet have long been considered essential to the 

growth and proper nutrition of humans and 

animals. On the contrary, they have also 

exhibited negative effects [1]. PUFAs exist in 

two major kinds, the ω-6 and the ω-3 forms. 

The ω-6 fatty acid esters such as the linoleic, 

conjugated linoleic, and arachidonic acids are 

known to enhance formation of cholesterol 

gallstones, a stimulus to carcinogenesis, 

increased vitamin E requirements, promotion of 

obesity, increased uptake of plant sterols, and 

increased cholesterol absorption [1-3+. The ω-3 

esters of the fatty acids such as α-linolenic, EPA, 

and DHA, on the other hand, have effects on 

diverse physiological processes impacting 

normal health and chronic disease, such as the 

regulation of plasma lipid levels, cardiovascular 

and immune function, insulin action, and 

neuronal development and visual function [4-

14].    

 

The -6/-3 ratio is an important indicator of 

human health. There is evidence that a 4:1 ratio 
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is required for maximum benefit for 

cardiovascular disease and less than 2:1 to have 

any effect on cancer [15]. 

 

Genetically speaking, human beings today live 

in a nutritional environment wherein major 

changes in our diet have taken place, 

particularly in the type and the amount of 

essential fatty acids and in the antioxidant 

content of foods [16, 17-20]. Comparing the 

hunter-gatherer with the western diet and 

lifestyle, the ω-6 to ω-3 ratio has shifted 

considerably from low to high [18]. Excessive 

amounts of -6 PUFA and a very high -6/-3 

ratio, as is found in today’s Western diets, 

promote the pathogenesis of many diseases, 

including cardiovascular disease, cancer, and 

inflammatory and autoimmune diseases, 

whereas increased levels of -3 PUFA (a lower 

-6/-3 ratio), exert suppressive effects [21]. 

 

Currently, several methods exist for the 

determination of cholesterol and PUFAs levels 

in human serum. Gas chromatography (GC), 

thin layer chromatography (TLC), and high 

performance liquid chromatography (HPLC) are 

the methods commonly used for PUFAs level 

determination in human serum [22]. However, 

these methods are complicated, quite 

laborious, and suffer from the difficulty of 

obtaining meaningful concentrations. 

  

The Purdie Assay was established to enable the 

simultaneous quantification of cholesterol and 

PUFAs in synthetic mixtures and human serum 

without the need for analytical separations [23]. 

The assay originated with the Liebermann-

Burchard reaction that was once the current 

gold standard for cholesterol, and was later 

based upon a reaction attributed to Chugaev 

and Gastev. The assay reagent had the extra 

selectivity of acylation of the - over the ß- 

position at the C-17 carbon that enabled the 

differentiation of anabolic steroids. In that and 

a following study, it was also determined that if 

multiple unsaturated lipids are present, the 

resulting compounded spectrum is the simple 

addition of the weighted spectra for each of the 

components, assuming no extraneous 

interferences are present [24]. 

 

Using this assay, various training set models for 

the simultaneous quantitation of cholesterol 

and PUFAs in synthetic mixtures and human 

serum were reported [17]. After exploitation of 

several chemometric models including KM, PM, 

RR, PCR, and PLS2, our studies showed that 

PLS2 yielded results for ω-3 and ω-6 PUFA data 

that are comparable when using the GC-MS 

method. Similar results were also derived for 

the between-methods ω-6/ω-3 ratios [25]. 

 

In this paper, PLS in the form of PLS1 is reported 

for obtaining the actual molar concentrations of 

cholesterol, and fatty acids of linoleic, linolenic, 

arachidonic, EPA, DHA, and conjugated linoleic 

in human serum. The training set data were 

mean centered prior to performing the said 

algorithm. The results are then compared with 

the GC-MS method. The RMSEP of the PLS1 

algorithm is also compared with the other 

algorithms. In addition, neural network (NN) 

was also attempted in the training sets and has 

been included in this paper. 

 

The theories behind the various chemometric 

algorithms will not be further discussed but can 

be referred to some bibliographic references in 

this paper [26-32]. 

 

Materials and Methods 
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Human Serum Samples 

The staff and volunteers at the Hillcrest Medical 

Center (HMC) in Tulsa, Oklahoma provided us 

with the human serum samples. Such 

anonymously named samples were from 

individuals who had requested a lipid profile 

and had given consent. No attempt was made 

to solicit samples nor was any extensive medical 

information derived from the samples. Prior to 

sample collection, the subjects fasted for at 

least 12 hours, and using a VacutainerTM red 

and grey capped separation tube, venous blood 

samples were collected from these individuals. 

After inversion of the tube five times to mix the 

blood and the components of the collection 

tube, the sample was centrifuged at 3400 RPM 

for 15 minutes. The collection tube contained a 

clotting activator which takes approximately 30 

minutes to activate and a floating gel that 

separates the red blood cells from the serum 

during the centrifugation step. The serum, 

which was the top layer in the tube, was then 

transferred to a 10 mL glass vial with a screw 

cap. The experimental assay was completed 

within three days of receiving the sample. 

Samples were stored in a refrigerator at 2-4°C 

and were allowed to return to room 

temperature prior to analyses. HMC samples 

were drawn from patients with normal to 

elevated cholesterol levels. For serum sample 

analysis, a 10 μL sample of serum was added to 

a 13 x 100 mm borosilicate disposable test tube. 

1 mL of 98 % acetyl chloride (AC) (Acros) was 

added to the test tube. A 40 μL aliquot of 

perchloric acid (PA) (70% ACS reagent grade, 

GFS) was carefully added down the inside of the 

test tube and slowly introduced to the AC, 

sample solution. The reaction starts on first 

contact with the perchloric acid. The solution 

was shaken by hand for twenty seconds to 

allow for the release of the small amount of HCl 

(g) from the reaction test tube. The test tube 

was then covered with a Teflon cap and placed 

into a centrifuge and spun for 3 minutes at 3400 

RPM. After centrifugation, precipitated proteins 

were separated, and the reagent solution was 

transferred to a 10 mm pathlength optical glass 

cuvette that was fitted with a Teflon stopper for 

the remaining time. Absorbance spectra were 

measured after 15 minutes on an HP8452A 

Hewlett Packard spectrophotometer. A 5-

second integration time and 2-nm spectral 

resolution were used to collect the absorbance 

data over the range of 350-550 nm. This 

wavelength range was chosen for the reason 

that the lipid analytes exhibit spectral variations 

in this range. For the analysis, the visible 

spectrum obtained for a typical plasma sample 

turned out to be the linear sum of the weighted 

contributions from all seven analytes that – 

given the heterogeneity of blood samples – 

leads to a broad diversity in the spectral 

patterns [23]. The blank for each reaction was 

pure AC. The reagent mixture of AC with PA did 

produce a slight color at 15 minutes. The 

combination of AC and PA was not used as a 

blank, due to the possibility of variability and 

small absorbance value out of such solution 

mixture. 

 

Synthetic Mixtures  

Methyl esters of ω-6 fatty acids (linoleic, 

conjugated linoleic, arachidonic), ω-3 fatty acids 

(α-linolenic, eicosapentaenoic, docosahexaeno-

ic) and free cholesterol in chloroform solutions 

were all used to prepare synthetic mixtures to 

be used as training and prediction sets. The 

training set was done using a full factorial 

design (n=128), and the prediction set was done 

using D-optimal design (n=16) using the SAS-

JMP Software Package [33]. All of the standards 

were 90 to 99 % pure based on gas 

chromatographic analysis and were all 

purchased from Sigma-Aldrich. Stock solutions 
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for each of the analytes with maximum total 

concentrations of 0.02 M and 0.04 M were 

prepared. The stock solutions were used to 

prepare mixtures to limit the maximum spectral 

response to ranges between 0.2 and 0.9 

absorbance units. The inclusion of water was 

taken into account in this study. Serum 

normally consists of 97 % water [34]. With the 

sample size of serum being 10 μL, 

approximately 9.7 μL of water was added to the 

reagents in cases where synthetic mixtures are 

analyzed. The final experimental assay involved 

the addition of 10 μL of distilled water as the 

first step, followed by 1 mL AC, 10 μL 

chloroform mixture sample, and finally 40 μL 

PA. The final steps of the assay remained the 

same as in serum in order to maintain 

constancy during the 15-minute reaction 

period. 

 

Chemometric Analyses 

Deconvolution of the mixture absorbance 

spectra to obtain the lipid analyte 

concentrations was done by applying 

chemometric algorithms. As compared to the 

previous paper, mean centering is applied to 

both PLS and PCR algorithms in this paper. 

Mean centering was also attempted in KM, RR, 

and PM but generated root mean square errors 

of predictions (RMSEPs) which are much larger 

than the non-mean centered training data sets. 

Accordingly, the training data sets were not 

mean-centered in KM, RR, and PM regression 

models. Chemometric analyses were performed 

in MATLAB using Chemometric Toolbox [35]. 

Neural network was performed using the JMP 

Software Package [36]. 

 

Determining the optimum number of factors 

(rank) to be used in the calibration is a key step 

in both PCR and PLS. To select the number of 

factors for PLS and PCR methods, the cross-

validation, leaving out one sample at a time, 

was used. This process was repeated 127 times, 

until each sample had been left out once. The 

Predicted Residual Error Sum of Squares 

(PRESS) was used to determine the optimum 

number of factors in both algorithms. To 

calculate the PRESS we compute the errors 

between the expected and predicted 

concentrations for all of the samples, square 

them, and sum them together as given by the 

equation (1) below [35]:  

 

)'(
1
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N

i

yyPRESS 


2                
(1) 

 

where y and y’ are the predicted and actual 

concentrations and N is the number of samples. 

The logarithmic plot of the PRESS values as a 

function of the number of factors indicates the 

rank to be used in the calibration. The root 

mean square error (RMSE) is also calculated for 

each algorithm. The general equation is  

 

         (2) 

 

The model with the minimum values for the 

RMSE indicated the appropriate model.  

 

Gas Chromatography-Mass Spectrometry (GC-

MS) Quantitation of Serum Samples 

Validation was done by quantitating the same 

serum samples using GC-MS detection. Blood 

serum was esterified using the method given by 

Guy Lepage and C. Roy *37+. 1 μL of the upper 

benzene phase of the esterified serum was 

chromatographed as methyl esters on 30-m 

fused silica column with an internal diameter of 

0.320 mm. The column was wall-coated with 

0.25 mm DB-23. Analysis was performed on a 

Shimadzu (GCMS-QP2010) gas chromatograph. 
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Helium was used as the carrier gas. The 

injection temperature was held at 250°C and 

the column oven temperature of 50°C. Splitless 

injection mode was used and the oven 

temperature program was held for 2.0 minutes 

at 50°C and then raised 180°C at 10°C/min and 

after 5.0 minute hold, the temperature was 

raised to 240°C at a rate of 5.0°C/min and held 

for 13 minutes. Peaks were identified by the use 

of pure reference compounds. Six PUFAs from 

18 to 22-carbons were identified. 

 

Results and Discussion 

 

Neural network (NN) was first attempted in this 

study. Using three hidden nodes, four number 

of tours, and with a 0.01 overfit penalty, the 

RMSEP in the training model is still considerably 

higher than any other algorithms. Though NNs 

can implicitly detect complex non-linear 

relationships between independent and 

dependent variables, they suffer from 

disadvantages of being prone to “overfitting,” 

and are “black box” and have limited ability to 

identify possible causal relationships [38].  

 

As with the previous results wherein PLS2 

outperformed all other algorithms in the 

training model [25], partial least squares in the 

form of PLS1 yielded lesser RMSEP than PLS2 in 

the same training model in this paper after 

mean centering of the training data set (Figure 

1). In PLS1, the highest RMSEP is obtained for 

DHA. The possibility of similarity in the molar 

absorbance spectra for EPA and DHA would be 

the reason why the RMSEP is higher for DHA 

(Figure 2). Nevertheless, this results show that 

despite similarities in the molar absorbance of 

the lipid components, the RMSEP of all 

components using PLS1 is still low as compared 

to other algorithms.  

 

PLS2 differs from PLS1 in the way used to 

perform the signal decomposition and the 

regression analysis. PLS2 calculates the number 

of factors on all the components simultaneously 

and one weighed number of factors is 

optimized. PLS1 performs the optimization of 

the number of factors for only one component 

at a time. The application of PLS in 

spectroscopic data can be referred to some 

bibliographic references [39-43]. 

 

Choosing the optimum number of factors in 

PLS1 is the key to obtain a good calibration 

model. The trick is to keep only those factors 

that contain analytical information. The 

discarded factors should contain only noise. If 

too many factors are kept, there is danger of 

overfitting the data and adding noise to the 

calibration. If there are not enough factors, a 

proper calibration model cannot be generated 

[35]. 

 

From Figures 3 and 4, it is readily apparent that 

prediction errors are minimized when 

calibrations are developed using the indicated 

number of factors as stated in the analyte’s 

respective figure captions. The obtained PLS2 

and PLS1 calibration models were applied to 

five serum samples obtained from HMC. Save 

for conjugated linoleic, all lipid components 

yielded positive molar concentrations in PLS1.  

As compared to the previous paper wherein 

PLS2 used 18 factors [25], the factors were 

reduced to an optimum number of 6 in PLS2 in 

this paper. The possibility of including a wide 

range of cholesterol and PUFAs concentration 

ranges calibration matrix is still collected, and 

when done, this assay will serve as a direct, 

time and cost saving method for simultaneously 

quantitating cholesterol and PUFAs in human 

serum. 
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Figure 1. 3-dimensional (3D) diagram of the RMSEP of the lipid analytes in each algorithm. PLS1 yielded the least RMSEP for all analytes. Other 
algorithms are identical as in the previous paper and are shown for comparison purposes only (25). 

 

 
 
Figure 2. Molar absorptivities of EPA and DHA determined by the K-matrix model as in the previous paper (25). These are shown for comparison 
purposes only. 
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Figure 3. Plot of PRESS vs ranks for cholesterol and conjugated linoleic. 6 and 4 factors were chosen for cholesterol and conjugated linoleic, 
respectively. 
 
 

 
Figure 4. Plot of PRESS vs ranks for linoleic, linolenic, arachidonic, EPA, and DHA with ranks 3, 8, 17, 7, and 3, respectively. 
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Table 1. PLS1 molar concentrations of cholesterol, linoleic, linolenic, arachidonic, EPA, and DHA in human serum samples compared to GC-MS. 
 

 

 

PLS1 GC-MS %  

Difference 

PLS1 GC-MS %  

Difference Cholesterol Linoleic 

P1 4.21E-03 4.09E-03 2.89 2.08E-03 1.98E-03 4.89 

P2 3.25E-03 3.01E-03 8.13 3.27E-03 2.87E-03 14.0 

P3 2.25E-03 2.39E-03 6.05 2.87E-05 3.19E-05 9.88 

P4 3.13E-03 3.39E-03 7.55 2.62E-03 2.44E-03 7.18 

P5 3.11E-03 3.19E-03 2.41 2.06E-03 3.01E-03 31.4 

 Linolenic  Arachidonic  

P1 3.13E-05 2.67E-05 17.2 1.46E-03 1.50E-03 2.42 

P2 3.83E-05 3.48E-05 10.0 2.86E-04 2.52E-04 13.7 

P3 5.79E-04 5.31E-04 9.05 2.40E-03 2.31E-03 3.84 

P4 5.76E-05 6.10E-05 5.58 2.86E-04 2.52E-04 13.7 

P5 3.75E-05 6.16E-05 39.1 9.70E-05 1.38E-04 29.7 

 EPA  DHA  

P1 2.83E-03 3.52E-03 19.5 2.28E-03 2.73E-03 16.5 

P2 4.05E-03 4.30E-03 5.86 9.77E-04 1.05E-03 6.91 

P3 2.39E-03 2.97E-03 19.6 1.80E-03 1.83E-03 1.81 

P4 2.10E-03 1.85E-03 13.3 1.74E-03 2.77E-03 37.1 

P5 2.17E-03 2.20E-03 1.39 1.80E-03 1.60E-03 12.3 

 
Table 2. PLS1 molar concentrations of conjugated linoleic in human serum samples compared to GC-MS. 

 

   PLS1 GC-MS % Difference 

P1 1.22E-04 1.21E-04 0.67 

P2 5.10E-04 5.17E-04 1.39 

P3 -8.26E-05 5.70E-04 - 

P4 -4.12E-04 1.03E-04 - 

P5 -5.63E-04 7.05E-05 - 

 

remaining three. CLA in normal physiological 

human serum exists in low concentrations (10-

70 µM) as compared to other fatty acids, 

linoleic (2270-3850 µM), -linolenic (50-130 

µM), arachidonic (520-1490 µM), EPA (14-100 

µM), and DHA (30-250 µM) [44, 45]. This would 

be the most probable reason of the negative 

molar concentrations for the PLS1 in CLA.  

 

Although successful, especially, in comparing 

relative percentage change in fatty acids for 

clinical studies, GC’s disadvantages include the 

derivatization steps which can alter the 

structure of the fatty acid or create side-

products that can overlap with the analytes 

needed [46]. Short chain fatty acid methyl 

esters can be eluted quickly and missed [47]. 

Also, the procedures are quite labor intensive; 

and it is difficult to obtain meaningful 

concentrations when using only a limited 

number of standards. These limitations 

strengthen the case for the development of this 



Journal of Biotech Research [ISSN: 1944-3285] 2010; 2:121-130 

 

129 
 

simple and direct method assay that does not 

require separation and reacts directly with the 

PUFAs. 

 

Summary and Conclusions 

 

As with the previous research results wherein 

PLS2 outperformed KM, PM, RR, and PCR in 

prepared mixtures in chloroform solutions 

(synthetic sera), PLS1 yielded the least RMSEP 

for all the lipid components as compared to all 

other algorithms in this study.  This study has 

also attempted to determine the molar 

concentrations of cholesterol and PUFAs in 

human serum by the PLS1 algorithm. PLS1 

yielded molar concentrations quite comparable 

with the GC-MS method in the actual human 

serum samples. The consistencies in the 

validation are evidence that the assay can be 

used as an alternative to the GC-MS 

procedures. While the GC-MS procedures gives 

only percentage values of the PUFAs, and 

obtaining a calibration curve in terms of peak 

areas and heights is a very tedious task, this 

new spectroscopic technology offers the 

advantages of being direct, simple, rapid, and 

cost efficient. The assay has a potential market 

for a wide array of clinical settings wherein GC-

MS is impossible. 
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