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Although polyunsaturated fatty acids (PUFAs) can be detected by chromatographic methods, a low cost method 

to quantify PUFAs in serum samples with little to no separation or sample preparation would enable PUFAs to 

be monitored and detected during routine clinical serum analysis. The goal of this research project was to 

develop a simple, direct alternative method for the determination of the PUFAs in addition to cholesterol in 

human serum. The simple colorimetric assay used is rapid, rugged, inexpensive, and specific to the -C=CH-CH2- 

group that accomplishes, in a single assay the simultaneous quantitation of cholesterol, ω-3 (methyl esters of 

linolenic, eicosapentaenoic (EPA) and docosahexaenoic (DHA)) fatty acids, and ω-6 (methyl esters of linoleic, 

conjugated linoleic (CLA), and arachidonic) fatty acids. Several chemometric models consisting of K-matrix using 

ordinary least squares (OLS) and non-negative least squares regression (NNLS), ridge regression K-matrix (RR), P-

matrix regression (PM), principal component regression (PCR), and partial least squares (PLS) were introduced 

and applied for the direct determination of lipids in synthetic human serum models. The principal outcome was 

that the RR, PM, PCR, and PLS algorithms successfully out-performed the K-matrix regression approach when 

applied to the study of prepared mixtures (synthetic sera) in chloroform solutions. In the case of assays for 

intact human serum specimens, the same PLS model yielded results for ω-3 and ω-6 polyunsaturated fatty acids 

(PUFAs). These data compared very well for the same samples when measured using the gas chromatography-

mass spectrometry (GC-MS) gold standard method. Similar results were also derived from the between-methods 

ω-6/ ω-3 ratios. This study has also demonstrated how chemometric algorithms might provide alternatives to 

separations methods for the direct determination of lipids in human serum and its synthetic models. The 

obvious profits from this accomplishment are the reductions in time and costs. 
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Introduction 

 

Hypercholesterolemia, obesity, coronary heart 

disease, diabetes, metabolic syndrome, insulin 

resistance, and cancer are all health conditions 

that are of major priorities in research 

laboratories and are often discussed in the 

news in Westernized societies. Cholesterol and 

polyunsaturated fatty acids have become a 

focus in the biomedical area in the evaluation of 

risk factors for the abovementioned diseases. 

Polyunsaturated fatty acids have been 

examined for positive and negative effects on 

the conditions listed above and many others.  

ω-6 fatty acids such as the linoleic, conjugated 

linoleic, and arachidonic acids are known to 

increase the cases of cardiovascular disease, 

hypertension, non-insulin dependent diabetes 
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mellitus, obesity, cancer, and myocardial 

infarction [1-3]. ω-3 fatty acids such as the α-

linolenic, EPA, and DHA, on the other hand, are 

essential for normal growth and development 

and may play an essential role in the prevention 

and treatment of hypertension, coronary heart 

disease, arthritis, inflammatory and 

autoimmune disorders, diabetes, cancer, and 

arthritis [4-10]. The trend in the Western diet 

has been shifted from a low to a high ratio of ω-

6/ω-3 fatty acids [11]. The alteration to this 

ratio and the increased rates of the 

abovementioned diseases have raised questions 

focusing on the possibility of an association 

between these two observations [11].  

There are several descriptions in the literature 

for the determination of cholesterol and 

polyunsaturated fatty acids in human serum. 

For polyunsaturated fatty acids, the current 

methods for the determination include gas 

chromatography (GC), thin layer 

chromatography (TLC), and high performance 

liquid chromatography (HPLC) [12]. However, 

these methods are complicated, quite labor-

intensive, and it is difficult to obtain meaningful 

concentrations when using these methods. No 

references were found for the direct 

determination of cholesterol and poly-

unsaturated fatty acids by spectrophoto-metry 

and chemometrics. 

A broad search is underway of simultaneously 

detecting cholesterol and polyunsaturated fatty 

acids in human serum in a cheaper and faster 

way. Based on the assay previously developed 

by the Purdie laboratory [13], an attempt of 

simultaneously determining the molar 

concentrations of these analytes in human 

serum is attempted. With appropriate 

experimental designs, several chemometric 

models consisting of K-matrix OLS, NNLS, RR, 

PM, PCR, and PLS are attempted and 

consequently compared for the determination 

of the mentioned analytes in synthetic mixtures 

(human sera). An initial attempt of using PLS in 

human serum was done and the ω-6/ω-3 ratios 

are validated with GC-MS. 

Theories regarding the abovementioned 

chemometric models can be referred to some 

references in this article [13-20] and will not be 

discussed further. 

 

Materials and Methods 

 

Human Serum Samples 

Serum samples for this work were provided by 

staff and volunteers at the Hillcrest Medical 

Center (HMC) in Tulsa, Oklahoma. The 

anonymous samples from HMC were from 

volunteers who were already requesting a lipid 

profile and had given consent. No attempt was 

made to solicit samples nor was any extensive 

medical information derived from the samples 

except for the cholesterol concentration which 

was determined by an outside clinical lab using 

an enzymatic test. Subjects fasted for at least 12 

hours prior to the collection of the sample. A 

venous blood sample was collected into a 

VacutainerTM red and grey capped separation 

tube. After inversion of the tube five times to 

mix the blood and the components of the 

collection tube, the sample was centrifuged at 

3400 RPM for 15 minutes. The collection tube 

contained a clotting activator which takes 

approximately 30 minutes to activate and a 

floating gel that separates the red blood cells 

from the serum during the centrifugation step. 

The serum, which was the top layer in the tube, 

was then transferred to a 10 ml glass vial with a 

screw cap. The experimental assay was 

completed within three days of receiving the 

sample. Samples were stored in a refrigerator at 
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2-4°C and were allowed to return to room 

temperature prior to analyses. HMC samples 

were drawn from patients with normal to 

elevated cholesterol levels. 

For serum sample analysis, a 10 μl sample of 

serum was added to a 13 x 100 mm borosilicate 

disposable test tube. 1 ml of 98 % acetyl 

chloride (AC) (Acros) was added to the test 

tube. A 40 μl aliquot of perchloric acid (PA) 

(70% ACS reagent grade, GFS) was carefully 

added down the inside of the test tube and 

slowly introduced to the acetyl chloride, sample 

solution. The reaction starts on first contact 

with the perchloric acid. The solution was 

shaken by hand for twenty seconds to allow for 

the release of the small amount of HCl (g) from 

the reaction test tube. The test tube was 

covered with a Teflon cap and placed into a 

centrifuge and spun for 3 minutes at 3400 RPM. 

After centrifugation, precipitated proteins were 

separated, and the reagent solution was 

transferred to a 10 mm pathlength optical glass 

cuvette that was fitted with a Teflon stopper for 

the remaining time. Absorbance spectra were 

measured after 15 minutes on an HP8452A 

Hewlett Packard spectrophotometer. A 5 

second integration time and 2 nm spectral 

resolution were used to collect the absorbance 

data over the range of 350-550 nm. The blank 

for each reaction was pure acetyl chloride. The 

reagent mixture of acetyl chloride with 

perchloric acid did produce a slight color at 15 

minutes. Due to the possibility of variability and 

small absorbance value, the combination of 

acetyl chloride and perchloric acid was not used 

as a blank.  

Synthetic Mixtures 

Methyl esters of ω-6 fatty acids (linoleic, 

conjugated linoleic, arachidonic), ω-3 fatty acids 

(α-linolenic, eicosapentaenoic, docosahexaeno-

ic) and free cholesterol in chloroform solutions 

were all used to prepare synthetic mixtures to 

be used as training and prediction sets. The 

training set was done using a full factorial 

design (n=128), and the prediction set was done 

using D-optimal design (n=16) using the SAS-

JMP Software Package [21].  

All of the standards were 90 to 99 % pure based 

on gas chromatographic analysis and were all 

purchased from Sigma-Aldrich. Stock solutions 

for each of the analytes with maximum total 

concentrations of 0.02 M and 0.04 M were 

prepared. The stock solutions were used to 

prepare mixtures to limit the maximum spectral 

response to ranges between 0.2 and 0.9 

absorbance units.  

The inclusion of water was taken into account in 

this study. Serum normally consists of 97 % 

water [22]. With the sample size of serum being 

10 μl, approximately 9.7 μl of water was added 

to the reagents in cases where synthetic 

mixtures are analyzed. The final experimental 

assay involved the addition of 10 μl of distilled 

water as the first step, followed by 1 ml AC, 10 

μl chloroform mixture sample, and finally 40 μl 

PA. The final steps of the assay remained the 

same as serum in order to maintain constancy 

during the 15-minute reaction period.  

Chemometric Analyses 

Mean centering was not opted by the authors in 

this study as a common preprocessing step for 

the spectroscopic data due to issue that 

calibrations produced with mean-centered data 

can respond to small instrumentation drifts by 

generating large errors in predicted 

concentrations [23]. 

K-matrix OLS, NNLS, RR, PLS, and PCR 

calculations were done in MATLAB using 

Chemometrics Toolbox [24]. 
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Determining the optimum number of factors 

(rank) to be used in the calibration is a key step 

in both PCR and PLS. To select the number of 

factors for PLS and PCR methods, the cross-

validation, leaving out one sample at a time, 

was used. This process was repeated 127 times, 

until each sample had been left out once. The 

Predicted Residual Error Sum of Squares 

(PRESS) was used to determine the optimum 

number of factors in both algorithms. To 

calculate the PRESS we compute the errors 

between the expected and predicted 

concentrations for all of the samples, square 

them, and sum them together as given by the 

equation (1) below [20]: 

              
)'(

1

ii

N

i

yyPRESS 


2                (1) 

where y and y’ are the predicted and actual 

concentrations and N is the number of samples. 

The logarithmic plot of the PRESS values as a 

function of the number of factors indicates the 

rank to be used in the calibration. 

The root mean square error (RMSE) is also 

calculated for each algorithm. The general 

equation is 

                (2) 

The model with the minimum values for the 

root mean square error can indicate the 

appropriate model. In this paper, all PLS 

calculations refer to PLS2 after an initial 

comparison showed that PLS2 yielded lower 

root mean square error of prediction (RMSEP) 

than PLS1. 

  

Gas-Chromatographic (GC-MS) Quantitation of 

Serum Samples 

Validation was done by quantitating the same 

serum samples using GC-MS detection. Blood 

serum was esterified using the method given by 

Guy Lepage and C. Roy [25]. 1 µl of the upper 

benzene phase of the esterified serum was 

chromatographed as methyl esters on 30-m 

fused silica column with an internal diameter of 

0.320 mm. The column was wall-coated with 

0.25 mm DB-23. Analysis was performed on a 

Shimadzu (GCMS-QP2010) gas chromatograph. 

Helium was used as the carrier gas. The 

injection temperature was held at 250oC and 

the column oven temperature of 50oC. Splitless 

injection mode was used and the oven 

temperature program was held for 2.0 minutes 

at 50oC and then raised 180oC at 10oC/min and 

after 5.0 minute hold, the temperature was 

raised to 240oC at a rate of 5.0oC/min and held 

for 13 minutes. Peaks were identified by the use 

of pure reference compounds. Six 

polyunsaturated fatty acids (PUFAs) from 18 to 

22-carbons were identified. 

 

Results and Discussion 

 

Figure 1 shows the comparison of the RMSEP 

for the seven different algorithms in each lipid 

analyte as calculated according to equation (2). 

It is very clear that the NNLS algorithm when 

applied to K-matrix yielded lower RMSEPs than 

their ordinary regression approaches. It is well 

known that the introduction of physically 

induced constraints reduces the error 

amplification factor of so-called incorrectly 

posed problems (highly sensitive to 

measurement errors), sometimes by an order of 

magnitude [26-27]. Gayle and Bennet [28] 

showed examples demonstrating the 

advantages of NNLS. Jochum and Schrott [29] 

also showed in their study the striking 

advantage  of   NNLS   and   its  reliability  of  the 

N
RMSE

N

i
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Figure 1. RMSEP comparison for each algorithm comparing the different lipid analytes. 

 

 

 

Figure 2. Molar absorptivities of the seven lipid analytes determined by the K-matrix model. 
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computed amounts of constituents at low 

concentrations. 

The large RMSEPs contributed by the K-matrix 

approach is very evident in Figure 1. Though 

this approach offers the advantage of 

representing the genuine absorptivities with 

reference to the spectra of the individual 

constituents as shown in Figure 2, it does, 

however, have the disadvantage in that the 

calibration and analysis are connected to the 

inversion of a matrix [30]. 

Although this is not a problem from the point of 

view of computational time, it might become a 

problem if ill-conditioned (less selective) 

systems are applied, where the spectra of the 

constituents are very similar [15]. In Figure 2, it 

is evident that several constituents have similar 

spectra save for cholesterol and conjugated 

linoleic. The RR technique was attempted in 

order to improve the prediction errors in such 

cases. The ridge parameter obtained by using 

the value of k=5.00E-7, which is the value taken 

from the plot of the standardized ridge 

coefficients vs. ridge parameter (Figure 3) 

resulted in improved results in the RMSEPs over 

the ordinary K-matrix least squares solution as 

shown in Figure 1. In a comparative simulation 

study by Frank and Friedman [31], it was shown 

that often the RR performs as well as PCR or PLS, 

all of them outperforming multiple linear 

regression (MLR) with forward variable 

selection. 

An alternative to the K-matrix approach is to 

calibrate the concentrations directly on the 

spectra. This is known as the P-matrix approach 

(or inverse model). A disadvantage of this 

calibration method is that the calibration 

coefficients (elements of the P-matrix) have no 

physical meaning, since they reflect the spectra 

of the individual components. Figure 4 shows 

the P-matrix regression coefficients obtained 

from the seven lipid analytes. 

It is evident in Figure 1 that the P-matrix 

technique also yielded comparable results with 

that of PCR and PLS. P-matrix approach offers a 

slight advantage over the classical K-matrix 

approach because a second matrix inversion is 

avoided [15]. 

One of the assumptions made in MLR is that the 

independent variables are truly independent. 

To the degree that this assumption is invalid, 

the resulting model parameters will be more 

affected by noise, eventually leading to loss of 

full rank [32]. Attempts to eliminate this 

collinearity problem have led to such 

developments as PCR and RR. 

Among all algorithms attempted, P-matrix, PCR, 

and PLS performed quite equally well, exhibiting 

low RMSEP values. The number of factors in 

PCR in Figure 1 might be high enough but this 

number of factors was determined to be the 

optimum number after cross validation 

calculations. 

PLS is a powerful multivariate statistical tool 

that has been successfully applied to the 

quantitative analysis of ultraviolet [33, 34], 

near-infrared [35-38], chromatographic [38-40], 

and electrochemical data [41]. PLS offers the 

signal-to-noise advantage gained by making use 

of all the measurements. Furthermore, by using 

only the significant number of latent variables 

in the procedure, a noise filtering effect is 

obtained which results in its improved 

predictive stability [42]. In a study conducted by 

Cassel ,et al [43] wherein PLS was tested in the 

presence of three inadequacies, (i) skew instead 

of symmetric distributions for manifest 

variables; (ii) multi-collinearity within blocks of 

manifest  and   between   latent   variables;  and
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Figure 3. Plot of standardized coefficient vs. ridge parameter for the RR approach. The point at which the ridge parameter, k = 5.00E-7, 

represents the optimum parameter value leading to lowest RMSEPs. 

 

 

Figure 4. P-matrix regression coefficients obtained by using the P-matrix approach. 
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Figure 5. RMSEPs for the different algorithms as clustered in each lipid analyte. 

 

 

Table 1. Comparing ω-6 total conc % and ω-3 total conc % between PLS and GC-MS of five serum samples. 

Category ω-6 total conc % ω-6 total conc % ω-3 total conc % ω-3 total conc % ω-6 /ω-3 total conc % 

Patient’s code PLS GC-MS PLS GC-MS PLS GC-MS 

P1 47.86 47.17 52.14 52.83 0.92 0.89 

P2 50.12 54.05 49.88 45.95 1.00 1.18 

P3 49.59 46.59 50.41 53.41 0.98 0.87 

P4 48.83 47.93 51.17 52.07 0.95 0.92 

P5 49.05 48.22 50.95 51.78 0.96 0.93 

 

 

Table 2. Comparing cholesterol PLS and enzymatic test of five serum samples. 

Sample Cholesterol, PLS pred. 

(mg/dL) 

Cholesterol, Enzymatic 

(mg/dL) 

Percent Error 

P1 203.61 187 -8.88 

P2 207.27 188 -10.25 

P3 187.98 189 0.54 

P4 193.31 189 -2.28 

P5 174.05 163 -6.78 

 

 

in Figure 5. Clearly from the figure, cholesterol 

and conjugated linoleic yielded the lowest 

RMSEPs. As mentioned earlier, these analytes 

have distinctive characteristic spectra that could 

be clearly distinguished from the other lipid 

analytes (Figure 2). EPA, DHA, linolenic, and 

arachidonic exhibit similar spectra and, thus, 

yielded high RMSEPs. 
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The PLS2 calibration coefficients were tested on 

some serum samples. The same serum samples 

were validated using GC-MS. Table 1 shows the 

comparison for the total ω-6 and ω-3 PUFA 

concentrations expressed as percentages and 

their ratios. It can be noted that the ω-6and ω-3 

total % concentration and the ratio of ω-6 to ω-

3 were substantially identical between the two 

methods. Table 2 shows the comparison 

between the PLS and the standard enzymatic 

test for cholesterol. 

 

Summary and Conclusions 

 

A number of independent chemometric 

algorithms were tested that included MLR-NNLS, 

RR, PCR, and PLS. The principal outcome was 

that the RR, P-matrix, PCR, and PLS algorithms 

performed quite equally well enough than the 

K-matrix approach when applied to the study of 

prepared mixtures (synthetic sera) in 

chloroform solutions. The PLS model was tested 

for intact human serum specimens, and yielded 

results for ω-3 and ω-6 PUFA data that are 

comparable when using the GC-MS gold 

standard method. Similar results were also 

derived for the between-methods -6/-3 

ratios. In this study, therefore, the dominance 

of PLS over the other chemometric models has 

been shown. This paper has also shown how 

Friedel-Crafts acylating assay coupled with 

chemometric algorithms might provide 

alternatives to separations methods for the 

direct determination of lipids in human serum 

and its synthetic models. The advantages of this 

simple technology are the reduction in time and 

costs. 
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