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In mammalian bone marrow, pro-B/pre-B cells undergo V(D)J recombination process which includes 
rearrangement of variable (V), diversity (D), and joining (J) gene segments of the immunoglobulin genes to 
generate the primary immunoglobulin repertoire. Upon activation by antigen, B lymphocytes undergo additional 
two genomic modification processes, somatic hypermutation (SHM) and immunoglobulin class switch 
recombination (CSR) to enhance the affinity of immunoglobulin function. Activation-induced cytidine deaminase 
(AID) enzyme is an essential factor which mediates cytosine deamination reaction in CSR and SHM processes. 
These processes utilize base excision repair (BER) and the mismatch repair (MMR) pathways which are critical 
pathways in processing base modification resulting from AID action. Non-homologous end joining (NHEJ) is crucial 
for repairing double strand break (DSB) after BER and MMR activities. In this review, we summarize the V(D)J 
recombination and class switch recombination processes and discuss DNA repair pathways which are involved 
during V(D)J recombination and class switch recombination. 
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Introduction 
 
Production of antibody diversity by the immune 
system depends on the capability of B and T cells 
to alter their genomes. Three genomic 
alterations in the immunoglobulin heavy-chain 
(IgH) and light-chain (IgL) loci enhance B cells to 
create the diverse repertoire of 
immunoglobulins, which include V(D)J 
recombination, class switch recombination (CSR), 
and somatic hypermutation (SHM). Developing 
B-lineage cells in the bone marrow assembles the 
exons that encode IgH and IgL variable regions 
through a process known as V(D)J recombination. 
V(D)J recombination involves assembly of 
variable (V), diversity (D), and joining (J) 

segments of the V exon of the immunoglobulin 
genes. Adjacent recombination signal sequence 
(RSS) exists at the 3' end of each V, J segment and 
at both ends of each D segment of each gene 
segment (V, D, and J). Recombination activating 
genes, RAG-1 and RAG-2, encode two proteins 
which identify RSS and introduce double-
stranded breaks at both strands of DNA at the 
RSS forming double-stranded breaks (DSB), then 
the regular machinery for repairing DSBs (by no 
homologous end-joining) swings into action 
(figure 1A) [1, 2]. These processes allow 
production of IgM by B cells which migrate to 
secondary lymphoid organs. After immunization, 
IgM B cells undergo further antigen-driven 
immunoglobulin-gene diversification through 
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somatic hypermutation (SHM) and class-switch 
recombination (CSR) in secondary lymphoid 
organs. Somatic hypermutation process involves 
accumulation of point mutations in the antibody 
V-region of both the heavy and light chains to 
alter the specificity of the antibody and produce 
high-affinity antibodies. Activation-induced 
cytidine deaminase (AID) enzyme is sufficient to 
generate hypermutation in the antibody V-region 
during SHM process. AID enzyme is an essential 
factor in SHM and CSR, which catalyzes 
conversion reaction of deoxycytidine residues to 
deoxyuridine on target DNA [3, 4]. 
 
Class-switch recombination process includes 
recombination between switch regions which are 
highly repetitive GC-rich sequences that lie 
upstream of all immunoglobulin C-region genes, 
with the exception of the δ C-region gene (Figure 
1b). Class-switch recombination process involves 
transcription through mammalian S regions [5]. 
Researchers demonstrated that generation of 
ssDNA R-loop substrates for the cytidine 
deaminase action of AID is processed by 
transcription through mammalian S regions. In S-
region, the AID-generated dU:dG mismatch is 
processed by the base excision repair (BER) and  
mismatch repair (MMR) pathways, which  
generate staggered DSB. Accordingly, both 
Uracil-DNA glycosylase (UNG) deficiency [6] and 
MMR deficiency [7, 8] result in CSR defects and 
immunodeficiency. Class-switch recombination 
ends are demonstrated to be repaired by non-
homologous end joining (NHEJ) which depends 
on X-ray cross-complementing protein 6/5 
(XRCC6/5) [9, 10]. The NHEJ process starts with 
binding of a protein complex, XRCC6/5 (Ku70/80) 
heterodimer to DNA end. The association of a 
DNA end with the Ku heterodimer creates a 
scaffold for attraction of the other NHEJ 
enzymes. The DNA-Ku scaffold attracts the DNA-
dependent protein kinase catalytic subunit (DNA-
PKCS) to the DSB to form the active protein 
kinase complex DNA-PK. After capturing both 
DNA ends together by this kinase, these non-
ligatable DNA termini need to be processed 
before the final ligation reaction can take place. 
The nucleases and polymerases enzymes are 

essential to either remove or fill-in single-
stranded, noncompatible overhangs. Finally, 
ligation reaction of the processed DNA ends is 
catalyzed by the ligase IV/XRCC4 complex. These 
reactions are enhanced by XLF/Cernunnos 
protein [21]. In this review, we discuss V(D)J 
recombination and CSR processes with their 
regulatory mechanisms. The interplay between 
AID enzyme and DNA repair pathways and how 
this interplay enhances genomic stability during 
B cell development are also discussed. 
 
 

VDJ recombination 
 

Developing B-lineage cells in the bone marrow or 
fetal liver undergo V(D)J recombination process 
which includes production of antigen receptor 
diversity after assembly of gene segments V 
(variable), D (diversity), and J (joining)at the 
antigen receptor loci. The Ig receptor gene 
segments are flanked by RSSs. The RSS normally 
consists of a highly conserved heptamer motif 
(5'-CACAGTG-3’) and nonamer sequence (5'-
ACAAAAACC-3’) separated by a spacer sequence 
of 12 or 23 nucleotides [11, 13]. The heptamer 
sequence is identified to be the critical 
recognition element. The first three nucleotides 
of the heptamer are identified as the highest 
sequence conservation which is essential for 
recombination. The nonamer sequence has a few 
highly conserved positions which are dispensable 
for recombination. V(D)J recombination occurs 
only between two gene segments flanked, 
respectively, by 12-(12RSS) and 23-(23RSS) bp 
spacers containing RSSs [1]. V(D)J recombination 
consists of two phases, cleavage and joining 
stages (Figure 1) [14, 15]. Cleavage stage is 
initiated by assembly of a hetero-tetrameric 
recombination activating gene 1 and 2 (RAG1 and 
RAG2) complex on a 12- or 23-RSS [16] and 
captures a complementary RSS. At the 5' end of 
the heptamer, the DNA is unwound [17], then 
RAG1 and RAG2 introduce a single-strand DNA 
nick at the heptamer-coding sequence [18-20]. 
After nicking the DNA at the heptamer coding 
border, RAGs process a trans-esterification 
reaction,   in  which  the  free  3'  hydroxyl  group 
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B 

                                 
Figure 1. V(D)J recombination. A. the first step includes combine one D gene with one J gene. Next, a V gene is combined with the DJ gene to create 
a VDJ unit. B. adjacent recombination signal sequence (RSS) exists at the 3' end of each V, J segment and at both ends of each D segment of each 
gene segment (V, D, and J). Heterotetrameric complex RAG1+RAG2 binds to either a 12-RSS or 23-RSS. This complex is synapsed with 
complementary RSS. The RAG enzyme then nicks one DNA strands of each RSS and stimulates hydroxyl group to attack the other DNA strand 
through trans esterification reaction. These reactions generate hair pinned coding ends and blunt signal ends which repaired by NHEJ repair 
pathway [14, 15]. 
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attacks the opposite DNA strand [21], resulting a 
pair of sealed hairpins at the coding ends, and 
blunt signal ends [22]. 
 
The non-homologous end joining (NHEJ) proteins 
are recruited to the coding ends and then these 
proteins open and join the coding ends to 
generate imprecise coding joints containing 
added nucleotides [23]. The Ku heterodimer is 
well demonstrated to start the repair phase via 
assembly to the RAG-generated breaks and is 
required for both signal and coding joints [24–
26]. Ku recruits DNA-protein kinase catalytic 
subunit (DNA-PKcs) which is required for coding 
joint formation. DNA-PKcs serves as a scaffold for 
other repair factors such as Ku heterodimer [27], 
Ligase IV–XRCC4 [28–30], and Artemis [31]. 
Inactivation of DNA-PKcs may result in a defect in 
coding joint formation and abnormal B- and T-cell 
development [32]. DNA-PKcs recruits and 
activates the hairpin-opening nuclease Artemis 
enzyme [33, 34], which is defined by its 
nucleolytic activities. Then, these enzymes could 
further contribute to coding end processing [35]. 
In vivo data showed accumulation of coding ends 
in developing lymphocytes from Artemis-
deficient mice. These studies have reflected the 
Artemis’ role as the hairpin-opening nuclease 
[36]. The final ligation step to form both signal 
and coding joints is processed by the Ligase IV–
XRCC4–Cernunnos/XLF complex [37, 38]. Ligase 
IV deficient cells showed impairment in V(D)J 
recombination in a human pre-B cell line [37, 39]. 
Productive assembly of IgH and IgL V-region 
exons allows the expression of IgH and IgL chains 
as cell-surface IgM by newly generated B cells. 
IgM B cells migrate to secondary lymphoid 
organs, for example, the spleen and lymph 
nodes, where they can undergo antigen-driven 
immunoglobulin-gene diversification through 
somatic hypermutation (SHM) and class-switch 
recombination (CSR) [40]. 
 
 

Class switch recombination 
 

Class switch recombination (CSR) is a process by 
which the constant region in the immunoglobulin 

heavy chain is rearranged to convert one class of 
immunoglobulin (such as IgM) to another (such 
as IgG). CSR involves the interconnection 
between switching regions which are extremely 
frequent GC-rich sequences of 1-10 KB in length 
that lie upstream of all immunoglobulin C-region 
genes with the exception of the δ C-region gene 
[42] (Figure 2). Recent reports demonstrated that 
CSR are initiated by AID activity.  Moreover, AID 
is a putative RNA-editing enzyme which catalyzes 
conversion of deoxycytidine (C) to deoxyuridine 
residues (U) [42]. The deamination reaction 
involves direct nucleophilic attack at position 4 of 
the pyrimidine ring of cytosine by Zn2+ 
coordinated to AID. In vitro experiments have 
shown that AID prefers sequences that conform 
to WRC motifs (W = A, T; R = A, G) [43], which are 
highly enriched in S regions in the form of AGCT 
[44]. Some reports demonstrated that complete 
deletion of AID hotspot motifs reduces CSR 
efficiency [45]. AID expression is limited to 
activated B cells [46] and AID deficient mice have 
shown completely defective in SHM and CSR [47]. 
Therefore, patients with HIGM2 harboring 
inactivating AID mutations lost the ability to 
undergo through SHM and CSR [48]. 
 
Several   pathways are identified as key players in 
stimulation of AID gene expression. CD40 ligand 
(CD40L):CD40 interaction is an essential pathway 
which stimulates AID transcription and increases 
AID expression after signaling NF-κB pathway 
[49]. Several types of cytokines such as B cell-
activating factor (BAFF), IL-4, TGF-β1, and a 
proliferation-inducing ligand (APRIL) are 
produced by immune cells (e.g., macrophages 
and dendritic cells) also stimulate expression of 
AID gene. 
 
In mouse B cells, AID expression is induced by IL-
4 which stimulates Stat6 and protein kinase A 
(PKA)/CREB pathways [50]. Also, the 
p38MAPK/CREB and JNK/AP-1 pathways, which 
are stimulated by BAFF, play critical roles in AID 
gene expression [51]. In replicating B cells, the 
cyclooxygenase 2/prostaglandin E2 pathway    
induces AID expression [52]. Other transcription 
factors, such as IRF-8 [53], Pax5 [54], Sp1/3 [55], 
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Figure 2. Class switch recombination (CSR). DNA breaks are introduced into switch (S) regions after the activity of the enzyme activation-induced 
cytidine deaminase (AID) and these DNA breaks undergo DNA repair process. CSR process proceed for repositioning the constant region genes and 
deleting the interstitial sequence as an episomal circuit [42]. 

 
 

 
 
Figure 3. Model of class switch recombination (CSR). CSR requires AID enzyme activity which deaminates a cytosine to create an uracil. 
Transcription by RNA polymerase II (RNA Pol II) through S region is an essential factor which provides the single-stranded DNA template for AID 
enzyme activity. Uracil, which produced by AID enzyme, then is processed through BER or MMR pathways [42]. 

 
 
E2A (E47), are identified to be critical in 
stimulation AID gene expression [56]. 
 
Chromatin immunoprecipitation studies 
indicated that AID expression in cells that are 
undergoing CSR is directly related to the 
transcribed S-region of the immunoglobulin 
(Figure 3) [57]. Transcriptional intervening (I) 

promoter and an I exon exist upstream of all C 
genes except δ C-region gene. Non-coding 
germline transcripts are produced after selective 
activation of I promoters and initiate at the I exon 
and undergo downstream of the corresponding 
heavy chain constant region gene (CH gene) [58] 
yielding ssDNA substrate for AID enzyme action 
[59]. 
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After binding of AID to the S region, protein 
kinase A is recruited and phosphorylates AID 
enzyme at Ser38 of the N-terminal region. The 
phosphorylated AID creates a binding site for RPA 
[60] which stimulates the deamination activity of 
AID and converts C into U. Then, a DSB is resulted 
if two Us are near in opposite strands after BER 
and MMR pathway activities [61]. In S regions, 
the first protein complex assemble to DSB is 
Mre11-Rad50Nbs1 complex which recruits the 
protein kinase ataxia-telangiectasia mutated 
(ATM). ATM activates and phosphorylates 
several DNA damage response proteins involving 
H2AX, mediator of damage checkpoint protein 1 
(MDC1) [62], breast cancer 1 (BRCA1), p53 
binding protein 1 (53BP1), ubiquitin ligases RNF8, 
RNF168, and receptor-associated protein 80 
(RAP80) [63]. DSB in different S regions are 
repaired by NHEJ repair pathway. The inference 
that CSR ends are repaired by NHEJ was initially 
supported by in vivo and in vitro studies which 
demonstrated that Ku70 or Ku80 deficient mice 
showed severely defect in CSR process [64]. 
Furthermore, the importance of DNA DSBs in CSR 
is indicated by the finding that CSR is abolished, 
or substantially impaired in B cells that are 
deficient in Ku70, Ku80, or DNA-PKcs. 
 
 
Switching deaminated DNA to DSBs by BER and 

MMR 
 
The BER and MMR pathways mediate the 
conversion of deaminated cytidines into DSBs. 
Base excision repair (BER) pathway is essential 
for recognition and repairing the base 
modifications including Us in the DNA [65, 66]. In 
the BER pathway for CSR, the first step is 
processed by Uracil-(N)-glycosylase (UNG). The 
UNG gene encodes two isoforms UNG1 and 
UNG2 that differ by their N-terminal sequence 
[67]. UNG2 is the major DNA glycosylase involved 
in U removal during CSR and SHM and is active on 
both single-stranded (ss) and double-stranded 
(ds) DNA. Inactivating mutations of UNG may 
result in severe blockade of CSR and defect in DSB 
formation at S regions [68]. Indeed, UNG 
deficient mice display a slow removal of U and 

display an about 20-fold increased risk of 
developing B-cell lymphomas [69]. UNG2 excises 
the irregular Us bases on the sugar-phosphate 
backbone creating an abasic site (Figure 4). Then, 
apurinic/apyrimidinic endonuclease (APE1) 
cleaves the phosphodiester bond on the 5′ side of 
a damaged nucleotide at the basic site, resulting 
in the formation of a 3′-OH group and a 5′ 
damaged nucleotide, and creates a single-strand 
break (SSB) in the DNA. Closely spaced, a 
staggered DSB can be formed by similarly 
generating SSB on the opposite strand.  
 
In vitro studies have shown that deletion of Ape1 
gene may reduce CSR efficiency to 20% of the 
wildtype level, strongly suggesting that APE1 is 
essential for CSR process [70]. Moreover, fewer 
Sμ region DSBs were demonstrated in Ape1 
deficient B cells undergoing CSR, providing the 
evidence that APE1 is required for incisions at AP 
sites during CSR [71]. 
 
The U can also be identified as a U-G mismatch 
and can be repaired by MMR [72, 73].  The dU:dG  
mismatch is recognized by MSH2-MSH6  
heterodimer which recruits MLH1/PMS2/EXO1 
complex.  Next, an incision of the mismatch can 
be made by the endonuclease complex PMS2 and 
MLH1 (Figure 5). Then, exonuclease EXO1, which 
has 5′ to 3′ exonuclease activity, creates a single-
stranded gap. dU-containing sequences excision 
on opposite DNA strands thus would create DSBs. 
Some research demonstrated that inactivating 
PMS2 or EXO1 results in CSR impairments in 
human and mice because of defects in DSB 
formation in S regions [74, 75]. These DSB with a 
5′ overhang then can be processed to a blunt DSB 
by DNA polymerases which is used by NHEJ 
pathways to complete CSR [76]. 
 
 

Non-homologous end-joining (NHEJ) 
 

The sliding of the protein complex, the Ku70/80 
heterodimer, over both ends of the broken DNA 
molecule is the basic step in the earliest stages of 
the NHEJ process. Crystallography studies of 
Ku70/80     proposed    that    open    ring-shaped 
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Figure 4. Model for DSB formation by BER in class switch recombination (CSR). AID converts DNA cytosines to uracils in switch (S) region. These 
uracils are excised by UNG2 enzyme. UNG2-generated abasic sites is converted to single-strand breaks after Ap Endonuclease (APE) enzyme 
activity. DSB is generated after introducing opposing single-strand breaks. Non-homologous end joining factors then process DSB to complete CSR 
event [42]. 

 
 
structure of Ku70/80, which is composed of one 
Ku70 (73 kDa) and one Ku80 (86 kDa) proteins, 
allows the Ku70/80 dimer to slide over the DNA 
termini, thus, explaining the high affinity of 
Ku70/80 for DNA termini [77]. Several studies 
demonstrated that the binding of a DNA end with 
the Ku heterodimer gives other NHEJ key 
enzymes binding capability to DNA ends (Figure 
6) [64]. By reaction of the Ku70/80 heterodimer 
with the broken DNA ends, the Ku-DNA complex 
generates a scaffold for the association of a 460-
kDa serine/threonine kinase:DNA-PKCS [78]. 
These reactions preserve the DNA termini against 
degradation and premature ligation. Biochemical 

experiments have demonstrated that DNA-PKCS 
molecule holds the DNA ends together prior to 
ligation [79] and generates a synaptic complex 
that juxtaposes two DNA termini, two Ku dimers, 
and two DNA-PKCS molecules. The association of 
DNA-PKCS with the Ku-DNA complex is essential 
for the activation of the DNA-PKCS 
serine/threonine kinase at the carboxy-terminus 
of the DNA-PKCS molecule. The DNA-PKCS 
molecule has 16 amino-acid residues that can be 
autophosphorylated by the DNA-PKCS kinase 
[80-82]. It is indicated that autophosphorylation 
process of DNA-PKCS occur when Ku and DNA-
PKCS form synapsis with the two DNA ends.  The 
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Figure 5. Mismatch repair model for DSB formation during CSR. U:G mismatch is recognized by Mut S-MutL which recruits Exo I protein to 5’ side 
of the U:G mismatch. Exo I introduces single strand breaks at a nicked site. A patch of DNA can be removed by Exo I until it reached the nicked site 
on the other strand. The staggered end of the DNA is filled by DNA polymerase and form a DSB. 

 
 
phosphorylation of the DNA-PKC has influence on 
conformation of the synaptic complex and 
unphosphorylated form at the DNA termini 
blocks the assembly of processing enzymes and 
ligases to the synaptic complex [83-85]. 
 
Several studies have demonstrated that the 
Ku70/80 heterodimer assembles several of the 
processing enzymes and ligation enzymes to the 
synaptic repair complex in a manner similar to 
the recruitment of DNA-PKCS. DNA termini will 
not be directly ligated because one of the strands 
will have a 3′ or 5′ single-strand overhang. A 
single-strand DNA overhang can be processed 
either by generating a complementary strand or 
by resection of the overhang. DNA polymerase μ, 
DNA polymerase λ, and human terminal 
deoxynucleotidyl transferase (TdT) are identified 
as critical enzymes which are capable of 
synthesizing a complementary strand by adding 
nucleotides in NHEJ. Pol μ and Pol λ are the 
members of the Pol X family of polymerases 
which participate in NHEJ. Both Pol μ and Pol λ 

can incorporate both dNTPs and rNTPs in a 
template-dependent or template-independent 
manner [86, 87]. DNA Pol μ and Pol λ have an N-
terminal BRCA1 domain that enables them to 
interact with Ku [26]. Primary mice cells with 
genetic knockouts of both Pol μ and Pol λ have 
shown deficit in DSB repair [88]. Pol X family 
members also involve terminal deoxynucleotidyl 
transferase (TdT) which is able to incorporate 
nucleotides during NHEJ in a template-
dependent manner. 
  
Terminal deoxynucleotidyl transferase (TdT) is 
only expressed in early B- and T-lymphocytes 
which undergo NHEJ repair that occurs during 
V(D)J recombination process [89, 92]. The 
endonuclease Artemis has been demonstrated as 
an essential enzyme which displays a 5′-3′ 
endonuclease activity for resection of single-
stranded overhangs. The Artemis protein itself 
has a 5′-3′ exonuclease activity. After association 
with the DNA-PKCS molecule, Artemis protein 
acquires     the     endonuclease     activity     that 
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Figure 6. Model for NHEJ. The Ku70/80 heterodimer binds to broken DNA ends. Ku molecules recruit DNA-PKCS. The DNA-PKCS molecules on both 
DNA ends form a synaptic complex which tethers the DNA ends. Trans DNA-PKCS autophosphorylation generates accessible DNA termini for other 
NHEJ enzymes. DNA ends are processed before ligation by Artemis nuclease. Finally, the ligase complex IV/XRCC4 mediates rejoining of DNA 
double-strand breaks [114]. 

 
 
processes hairpin opening during V(D)J 
recombination [93, 94]. 
  
Processing of DNA ends also can be mediated by 
mammalian polynucleotide kinase (PNK). PNK 

can add 5′ phosphate groups to DNA termini 
which are essential for the ligation reaction [95]. 
The PNK, the apurinic/apurinic endonuclease 
(APE1), the tyrosyl-DNA phosphodiesterase 
(TDP1), and the endonuclease Artemis are 
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identified as critical enzymes for removing 3′ 
phosphoglycolates in certain case before ligation 
reaction [96]. 
 
Finally, the ligase complex IV/XRCC4 stimulates 
binding of processed DNA ends. One in vitro 
study has indicated that, after interaction with 
Ku70/80, the ligation activity of ligase IV/XRCC4 
increases 20-fold, suggesting that Ku is critical to 
activate ligase IV/XRCC4 [97]. Ligase IV is 
demonstrated to be composed of the N-
terminus, which includes a DNA binding domain, 
an adenylation domain, an oligo-binding domain, 
and the C-terminus containing two BRCA1 C-
terminal (BRCT) domains [98]. BRCT motifs 
mediate protein–protein and protein–DNA 
interactions [99–101]. XRCC4 has a globular 
amino-terminal head and a long carboxyterminal 
stalk [102]. The amino-terminal head interacts 
with DNA and the carboxy-terminal region 
between amino acids 173 and 195 enhances the 
association of XRCC4 with ligase IV [103]. The 
BRCT domains associate with Ku [104] and the 
homodimer of XRCC4 binds to the region 
between the two BRCT domains. The association 
of XRCC4 with DNA ligase IV form bridging 
between the two DNA ends [105, 106]. Together, 
XRCC4 and Ligase IV create a stable complex, and 
XRCC4 absence results in degradation of Ligase 
IV. Consequently, XRCC4 is identified as essential 
enzyme to both stabilize and stimulate ligase 
IV/XRCC4 ligation activity [107, 108]. This ligation 
reaction may be enhanced by the existence of 
what has been recently discovered which is called 
XLF/Cernunnos protein [109]. Cernunnos-XLF is 
phosphorylated by DNA-PKCS in human cells in 
response to DSBs [110]. XLF/Cernunnos factor 
interacts with the ligase IV/XRCC4 complex and 
modulates the ligation efficiency of ligase 
IV/XRCC4 [111]. Recent studies proposed that 
XLF interacts with XRCC4 and creates a helical 
filament of alternating Cernunnos-XLF/XRCC4 
dimers which, thereby, stabilizes DNA end 
synapsis [112]. Ligase IV is needed to stabilize 
both the association of Cernunnos-XLF/XRCC4 
and its recruitment to the sites of DNA breaks. 
Cernunnos-XLF deficiency results in a defect in 
DSB repair including both signal and coding joins 

in V(D)J recombination [113]. Taken together, 
NHEJ is critical for the efficient repair of DNA 
double-strand breaks (DSBs) during V(D)J 
recombination and CSR and point mutations in 
the core NHEJ factors may result in genomic 
instability and carcinogenesis. 
 
 

Conclusion 
  
In this review, we presented the roles of DSBs in 
V(D)J recombination and CSR during B cell 
development. V(D)J recombination process 
divided into cleavage and joining stages. RAG1 
and RAG2 recombinase enzymes are the 
essential factors which modulate V(D)J 
recombination process by generating DSB. These 
DSBs are processed by the non-homologous end 
joining (NHEJ) proteins yielding IgM B cell. After 
immunization, IgM B cells undergo CSR and SHM 
which are initiated by AID enzyme activity. AID 
mediates cytosine deamination reaction which 
would yield U:G mismatches that stimulate either 
the MMR or the BER pathways. Both MMR and 
BER pathways are sufficient in processing U:G 
mismatch into DSB which are rejoined by NHEJ 
pathway to complete CSR events. Aberrant repair 
of such DSBs can lead to chromosomal breaks 
and translocations, which are critical factor in B-
cell lymphomagenesis. 
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