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N6-methyladenine (6mA) is a type of post-replication modification that exists across a wide range of DNA 
sequences. It has emerged as a key element in various biological processes, and due to this fact, has attracted 
great attention for its ability to be a target for disease treatment. Identifying 6mA sites has been the prelude to 
understand multiple biological functions including DNA replication, transcription, and repairing. Aside from a few 
numbers of experimental methods, a series of predictors were developed to distinguish 6mA sites in the whole 
genome. In this study, a 6mA site predictor named iDNA6mA-Pred was designed, which used a variety of valid 
feature descriptors to obtain informative characteristics. To improve computational efficiency and reduce the 
amount of redundant information, 34-dimensional features were selected with the aid of the F-score and were 
employed to learn support vector machine model. This study resulted an support vector machine (SVM)-based 
predictor to recognize 6mA sites of the rice genome, where nucleic acid composition (NAC), dinucleotide 
Composition (DNC), and Position-Specific Trinucleotide Propensity (PSTNP) were used to characterize the DNA 
sequences. Jackknife test results showed that the property of iDNA6mA-Pred was accurate with an accuracy rate 
of 92.16%. This predictor could be used for accurate identification of 6mA sites.  
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Introduction 

 
In recent years, researchers identified DNA 6mA 
modification in the genomes of algae [1], 
drosophila [2], and nematode [3]. It showed that 
6mA existed in the eukaryotic genome, which 
broke the traditional view that it was the specific 
epigenetic modification of prokaryotes and gave 
the study of 6mA a second life. Subsequently, 
more and more research teams joined in the 
study of 6mA, which showed that 6mA was not 
only spread in eukaryotic genomes, but also had 
a regulatory effect on gene expression. In 2018, 
6mA modification maps of human cells were 

reported. 6mA is widely appeared in the human 
genome (including mitochondrial genome), and 
the abundance of 6mA in cancer tissues is 
significantly low. At the same time, N6AMT1 was 
identified as 6mA methylase [4]. In the same 
year, other researchers studied the function of 
6mA in glioma in detail and determined that the 
content of 6mA in brain cancer stem cells was 
higher than that in normal nerve tissue, and 
targeting 6mA demethylase ALKBH1 was 
expected to be a new strategy for the treatment 
of this type of cancer [5]. Meanwhile, plant 6mA 
studies were also being carried out. The 6mA 
modification maps of rice and Arabidopsis 
Thaliana genomes were completed in 2018 [6-8]. 
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As a methylation modification, DNA 6mA has 
potential effect on downstream biological 
functions and can determine expression levels of 
the genome. However, it is a very conservative 
DNA modification [2, 9–12]. This reversible 
modification allows for a more dynamic histone 
modification process, further affecting DNA 
structure, DNA transcription, and creating the 
ability for a limiting process of histone 
modification [13–15]. 6mA exists widely in 
prokaryotes, and its modification levels change 
dynamically over the course of an entire life 
cycle, influencing expression levels. Species 
diversity of plants and animals were closely 
related to the changes in 6mA, and DNA 6mA 
demethylase was found in drosophila species [2, 
4, 9]. Recent work has reported that 6mA has 
been detected in rice, maize, and human cells by 
a series of experimental techniques [3, 4, 16-22]  
including single-molecule real-time sequencing 
[23], methylated DNA immunoprecipitation 
sequencing [24], and capillary electrophoresis, 
and laser-induced fluorescence [25]. Identifying 
6mA methylation may bridge the gap for 
understanding the biological mechanisms. Apart 
from a group of biochemical experimental 
methods to identify presence of 6mA sites, a 
series of methods of calculation involving 
machine learning were developed to identify 
6mA sites. In recent years, some researchers 
have developed several predictors to identify 
6mA sites in biological sequences. The authors 
used support vector machine (SVM) to establish 
i6mA-Pred predictor with an accuracy of 83.13%, 
in which the characteristics were obtained by 
considering nucleotide frequency and chemical 
properties of nucleotides [16]. Tahir, et al. 
developed the iDNA6mA (5-step rule) predictor 
according to a deep learning approach and 
achieved an accuracy of 86.64% [17]. Chen, et al. 
also built the MethyRNA predictor and identified 
6mA sites in H. sapiens and M. musculus with an 
accuracy of 90.38% and 88.39%, respectively [26, 
27]. 
 
Although a few prediction models were 
developed for the classification and recognition 
of 6mA, there is still some rooms for prediction 

performances. To obtain higher prediction 
performances and examine the potential 
associated features from various aspects, this 
study developed a more comprehensive and 
balanced feature set by using three feature 
extraction methods including nucleic acid 
composition (NAC), di-nucleotide composition 
(DNC), and position-specific trinucleotide 
propensity (PSTNP). Further, the feature 
selection algorithm, Max-Relevance-Max-
Distance (MRMD), was used to obtain the 
optimal feature set, which was used to train the 
SVM model and finally obtained a predictor with 
high performances. The results of this study will 
provide a potential method for identifying the 
site information of 6mA in other species of 
biology. 
 
 

Materials and methods 
 

Computational hardware and essential settings 
All the experiments were conducted by using 
MATLAB 2020b (MathWorks, Natick, 
Massachusetts, USA) and LIBSVM package 3.22 
(https://www.npackd.org/p/libsvm/3.22) on a 
personal computer with an intel i7 CPU, 16 GB 
memory, and 512 GB hard disk. Computational 
scheme with Chou’s 5-step rule [28] provided 
some powerful and practical tools for identifying 
the recombination spots at high performance. 
Along with Chou’s 5-step scheme, there were a 
series of publications [17, 27, 29–39] for 
analyzing biological sequences. Chou’s 5-step 
scheme consisted of the following steps: (1) 
building a sound benchmark dataset for learning 
and testing predictors; (2) biological sequences 
were transformed into mathematical expressions 
to accurately express the intrinsic correlation of 
biological sequences; (3) developing an ideal 
predictor (or engine); (4) validating the 
identifying performance by using cross-validation 
tests, jackknife tests, or independent tests; (5) 
developing an accessible web-server to the 
public. The first four steps focused on designing a 
computing model, and the final step (setting up 
the webserver) was dedicated to achieving a 
simple and user friendly interface (Figure 1).  

https://www.npackd.org/p/libsvm/3.22
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Figure 1. The Chou’s five-step computational scheme. 

 
 
Benchmark dataset 
The experimental datasets for the 6mA editing 
sites in rice genome were collected from previous 
works conducted by Chen, et al. [16]. With the 
help of this dataset, the predicted value 
determined by the evaluation with other existing 
predicted values were compared. The adopted 
datasets met two sets of criteria including (1) the 
sites with a modified score less than 30 were 
filtered out; (2) the cutoff threshold was taken as 
60%, which meant the sequences with values 
higher than the cutoff threshold were removed 
[17]. Notably, all sample lengths were 41 bp long. 
The benchmark dataset was described as follow: 
 

+ −= US S S                                                          (1) 

 
where the positive subset S+ included 880 DNA 
sequences centered on 6mA sites, while the 
negative instances S- contained 880 DNA 
sequences centered on non-6mA sites. The sign 
of U indicated the “union” of two sets [39, 40]. 
 
Sample sequence representation 
Every sequence sample was denoted as follow: 
 

S = N1 N2 N3 ۰۰۰NL            (2) 
 

where the length L = 41 [41, 42], and Ni denoted 
the nucleic acid at the i-th position, 

{ , , , },iN A C G T  ( 1,2, , )i L=  . Three feature 

extraction techniques including NAC, DNC, and 
PSTNP were adopted. These three methods could 
convert DNA sequences into numerical vectors 
for training classification algorithm. 
 
(1) NAC:  
As one of the most commonly used encoding 
methods, NAC has been used in various biological 
sequences [43-47]. Every sample was composed 

of four nucleotides, and the NAC described the 
frequency of all nucleic acid types in involved 
instances shown as follow: 
 

( )
( ) , { , , , }

N t
f t t A C G T

L
=             (3) 

 
where N(t) represented the frequency and 
quantity of each nucleic acid type, respectively, 
and L represented the length of each sequence. 
 
(2) DNC  
DNC contains information about the occurrence 
of all nucleotide pairs [44, 47–51], which also has 
potential identification information for 
recognizing DNA N6-methyladenine sites. Every 
sample consisted of four nucleotides, thus, the 
di-nucleotide composition had 16 descriptors. 
Dinucleotide composition could be denoted as: 
 

( , ) , , { , , , }
1

rsN
D r s r s A C G T

L
= 

−
           (4) 

 
where D(r, s) and Nrs represented the occurrence 
rate of different DNC types and the quantity of di-
nucleotides in regard to nucleic acid types r and 
s. L was the length of each sequence. The DNC 
included 16 descriptors, and thus, 16-
dimensional features were extracted by 
accounting for the occurrence rate information 
of DNC. 
 
(3) PSTNP  
PSTNP reflects the whole content of 
trinucleotides [47, 52] and the position 
information of each trinucleotide [53–55]. 
Position-specific trinucleotide propensity was 
used to characterize the differences in the 
position of trinucleotides in 6mA and non-6mA 
sequences. For a sequence with length L (L = 41), 
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a dimensional eigenvector was constructed as 
follows: 
 

             (5) 
 

where Øv was defined as: 
 

   (6) 
 

where ( ), 64*39i jY y=  could be formation with 

equation (7). 
 

( ) ( ), trinucleotide trinucleotide 

( 1,2, ,64; 1,2, 39)

i j i iy F j F j

i j

+ −= −

=  = 

∣ ∣      (7) 

 

( )trinucleotide iF j+ ∣ and ( )trinucleotide iF j− ∣  

represented the occurrence rate of the i-th 
trinucleotide at the j-th position in positive and 
negative samples, respectively. The matrix Y 
could be expressed as follow: 
 

           (8) 
 

In total, 59 dimensions of features including   4 
dimensions for NAC, 16 dimensions for DNC, and   
39 dimensions for PSTNP were obtained. Positive 
and negative samples were transformed into a 
numerical feature matrix with 880 × 59 
dimensions, respectively. Numerical feature 
matrices were convenient for learning classifiers 
and also in designing computational models. The 
positive sample sequence representation was 
exhibited in Figure 2. 
 
Feature selection 
As a classical feature evaluation filtering method 
based on statistical measurement, F-score is 
widely used in various fields [56–58]. The 

features due to the statistical values derived from 
the method following the rule that the element 
with a high value had good discrimination ability 
were sorted in this study. The incremental 
feature selection (IFS) added features from high 
to low according to the F-score values. When a 
feature was added, a new feature set was formed 
and sorted according to the F-score values to find 
the optimal subset. Although 59 potential 
features were extracted from various methods, 
there might still exist some redundant features 
that would negatively impact the model learning 
[59, 60]. For the purpose to eliminate redundant 
features for enhancing the model’s accuracy, a 
series of feature selection were conceived 
including new filter approaches, wrapper 
methods, and embedded strategies. In addition, 
filter methods, MRMD and F-score, were also 
employed [61–64]. 
 
Support vector machine and Performance 
evaluation 
In this study, SVM was selected as the original 
classifier. Each sample was alternately selected 
as the test set and the rest as the training set in 
the process of test. By performing the above 
procedure, each sample played a role in the 
training and test sets. Further, jackknife test was 
employed in the study to evaluate the 
performance of designed model. Four 
measurements including sensitivity (Sn), 
specificity (Sp), accuracy (Acc), and Matthew’s 
correlation coefficient (MCC) were included in 
this study [65, 66]. 
 
 

Results and discussion 
 
To obtain higher performance of the computing 
model, potential feature information is extracted 
from all aspects, but at the cost of high-
dimensional features and poor computing 
efficiency. Feature selection approaches are 
usually used to find optimize features subset to 
improve identification efficiency [61, 67–69]. The 
feature vectors can be evaluated by employing 
filter approaches, wrapper methods, and 
embedded approaches [70–73]. In the process of 
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Figure 2. Positive sample sequence representation. 

 
 
building the iDNA6mA-Pred model, feature 
extraction, feature selection, and classifier 
selection were the key components of target 
recognition. It is a common method to consider 
the synergetic effect of feature subset and 
classifier. In machine learning, SVM (also known 
as support vector network) is a supervised 
learning model and related learning algorithm for 
data classification and regression analysis [74]. In 
addition, SVM can effectively solve nonlinear 
classification problems by solving the linear 
classification problems in a multidimensional 
feature space derived from kernel methods. For 
classical SVM, the training data is equipped with 
classification labels, however, label instances are 
huge tasks.  In industrial applications, clustering 
is often used as a preprocessing step for ranking 
when the instances are unlabeled, or some are 
labeled. In the evaluation of the computational 
model, three methods are usually used, namely 
jackknife test, cross-validation test, and the 
independence test, among which, the jackknife 
test is the most commonly used test method. It 
has known from the process of the jackknife test 
that the results are relatively objective, so the 
jackknife test has been usually used as the 
performance evaluation of the predictor.  
 
Parameters of support vector machine  
The radial basis function (RBF) serves as the 
nonlinear map (kernel function) of input data in 
the SVM model. For optimizing penalty 
parameter C (cost) and kernel parameter g 
(gamma), the grid search method with jackknife 
test was employed. The parameters C and g were 

in [2-8, 28] and [2-8, 28]. The optimized parameters 
C = 11.3137 and g = 32 were assigned to predict 
the 6mA site in the rice genome. 
 
Optimal feature analysis 
The obtained 59 features were taken as the input 
vector for SVM for developing the predictor. The 
performance of the model was evaluated by the 
jackknife test. The Sn, Sp, Acc, and MCC of the 
prediction results were 0.8807, 0.8614, 0.8710, 
and 0.742, respectively. Although the 
performance was satisfied, there were still 
possibilities for improvement in reducing the 
number of redundant features and improving the 
performance of the predictor. Therefore, two 
additional methods were adopted to eliminate 
redundant features and select the best feature 
set. The first method was to use the MRMD and 
the IFS to find an ideal feature subset. A set of  
57-dimension feature subset was obtained. The 
prediction result of SVM with the values of Sn, Sp, 
Acc, and MCC were 0.8920, 0.9193, 0.9057, and 
0.8120, respectively, for the jackknife test. The 
second method was the combination of F-score 
ranking method with the IFS to eliminate 
redundant features and select for the best subset 
of features. The optimal feature set contained 34 
feature dimensions for the input vector was used 
to build the predictor using the SVM model. The 
performance of the SVM model showed the 
values of Sn, Sp, Acc, and MCC as 0.9170, 0.9261, 
0.9216, and 0.8430, respectively by applying 
jackknife test. The improvement in the 
performance of the predictors with the aid of 
non-redundant  feature  selection  methods  was 
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Figure 3. IFS curves of MRMD method and F-score ranking method. 

 
 
observed. The results of predictor performance 
were listed in Table 1. The corresponding IFS 
curve was shown in Figure 3. By examining the 
classification performances, the F-score ranking 
method with the IFS was chosen to construct the 
predictor in this study, because it contributed to 
yield higher accuracy values than that in the 
MRMD method. 
 
Table 1. Performance of predictor by jackknife test. 
 

Features 
(dimension) 

Sn 
(%) 

Sp 
(%) 

Acc 
(%) 

MCC 

All Feature (59) 88.07 86.14 87.10 0.742 
MRMD (57) 89.20 91.93 90.57 0.812 
F-score (34) 91.70 92.61 92.16 0.843 

 
Comparison with other classifiers 
Classifier selection is a very important step in 
designing the predictor. A range of classification 
learning algorithms such as K-nearest neighbor 
(KNN), logical regression, discriminatory analysis, 
and SVM have been well developed and 
successfully applied in bioinformatics [75]. In this 
study, 34-dimensional features obtained by F-
score feature selection were obtained to train 
different classifiers for identifying 6mA sites 
across the rice genome. The prediction results of 
SVM were compared to the other classifiers. The 
relevant jackknife test data (based on the same 
sample) were shown in Table 2. In terms of Sn, 
Acc, and MCC, SVM achieved better results than 
that from the other classifiers. Therefore, SVM 
was chosen to build the computational model. 

Table 2. Data of different classifiers. 
 

Classifier Sn 
(%) 

Sp 
(%) 

Acc 
(%) 

MCC 

SVM 91.70 92.61 92.16 0.842 
KNN (K=5) 78.30 94.77 86.53 0.741 
Logical Regression 89.55 91.36 90.45 0.809 
Discriminatory 
Analysis 

88.18 93.41 90.80 0.817 

 
 
Table 3. Comparison of different methods. 
 

Method Sn 
(%) 

Sp 
(%) 

Acc 
(%) 

MCC 

i6mA-Pred 82.95 83.30 83.13 0.660 
iDNA6mA 86.70 86.59 86.64 0.730 
iDNA6mA-Pred 91.70 92.61 92.16 0.843 

 
Comparisons with other methods 
 Many efforts have been undertaken to 
distinguish 6mA sites. To evaluate the 
performance, the designed iDNA6mA-Pred 
predictor from this study was compared to the 
previously developed i6mA-Pred [16] and 
iDNA6mA [17] predictors. The comparing data of 
Sn, Sp, Acc, and MCC were listed in Table 3. 
Comparing to the other two existing prediction 
systems, the newly designed method in this study 
was very accurate. Thus, this new method was 
effective and could be used as a powerful tool for 
predicting 6mA sites in the rice genome. In the 
experimental process, the F-score method was 
successfully used for feature selection. It was 
evident that this new model performed better 
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than the other existing models since the results 
indicated an elevation of 3.63% sensitivity, 6.47% 
specificity, 5.06% accuracy, and 10.10% MCC 
levels. 
 
 

Conclusion 
 
A new method of iDNA6mA-Pred was developed 
in this study to predict the rice genome 6mA 
sites. The method development process was as 
follows: (1) DNA sequence samples were 
converted into numerical vectors by three 
feature-extraction methods of NAC, DNC, and 
PSTNP; (2) 59 features were obtained to train 
newly developed method with the final jackknife 
test result of 87.10% in accuracy; (3) F-score and 
IFS strategies were applied in the study to select 
effective, non-redundant features from the initial 
set of 59 features, and to improve the accuracy 
of the model, which ended to 34 features to be 
used to train this newly developed method with 
the final jackknife test achieved an accuracy of 
92.16%. By comparing this method to the 
different classifiers and other existing predictors, 
the results showed that the new method 
outperformed other existing methods. The 
results confirmed that this newly developed 
method could provide a powerful prediction of 
the 6mA sites in the rice genome. As the next step 
of this study, a web server with this new method 
will be built up for public access. 
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