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During the growth of tobacco, the appearance of tobacco leaf flowers marks the key reproductive stage of the 
growth cycle. Management measures during this period will directly affect the energy distribution of the plant 
and determine the quality and final yield of the tobacco leaves. Therefore, research on the spatial positioning and 
identification technology of tobacco leaf flower tops not only helps to accurately grasp the growth progress of 
tobacco, but also provides technical support for the realization of precision agriculture. At present, the monitoring 
technology of tobacco leaf flowering mainly relies on traditional manual observation and recording. Although this 
method is intuitive, it has the problems of low efficiency, strong subjectivity, and inability to conduct large-scale 
real-time monitoring, which seriously affects the collection of tobacco leaf flowering information accurately. With 
the development of precision agriculture, some automation technologies have been introduced into the collection 
of tobacco leaf flowering information. This study was based on binocular visual communication technology to 
identify the spatial positioning of tobacco leaf flower tops. A binocular visual communication system was 
designed, and a spatial positioning recognition method for tobacco leaf flower tops and an optimization 
technology for Convolutional Neural Networks (CNN) oriented spatial recognition were proposed. The results of 
spatial positioning recognition for tobacco leaf flower tops were analyzed and showed that the binocular visual 
communication system could effectively collect crop status information. The image segmentation algorithm in the 
visual system could effectively identify tobacco flower tops. The system had strong information analysis ability 
and could accurately predict the quality and yield of tobacco flower tops based on images. When the algorithm 
constructed in this study processed images of different areas of tobacco leaf flower tops, the centroid deviation 
distance was between 0.30 and 1.60 m, which was better than other algorithms. Reduced centroid deviation 
distance appeared after Fuzzy C-Means (FCM) processing. Compared with the illustration grid, the accuracy of the 
Visual Geometry Group (VGG) grid was improved, and when the ratio of the style image impact factor and the 
content image impact factor was 5, the accuracy rate increased the fastest. The method proposed in this study 
improved not only the accuracy of image processing, but also the accuracy and efficiency of tobacco leaf flower 
top information collection, showing better performance than the existing technology. The application of this 
technology would improve the scientific and technological content of agricultural production and reduce labor 
costs. 
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Introduction 
 

Tobacco leaf is the main raw material for 
manufacturing tobacco products. The technology 
and quality control during tobacco leaf 
production and processing are directly related to 
the quality and yield of tobacco products. The 
positioning and identification of tobacco leaf 
flower tops play a crucial role in the growth, 
harvesting, and primary processing of tobacco 
leaves [1, 2]. Traditionally, the positioning and 
identification of tobacco leaf flower tops mainly 
relies on manual work, which is not only labor-
intensive and inefficient, but also prone to 
misjudgments and omissions, resulting in 
unstable tobacco leaf quality and reduced 
production efficiency. The shape and color of 
tobacco leaf blossoms have their own specific 
characteristics. However, in the actual 
production environment, due to the influence of 
light, background, and other environmental 
factors, the image recognition of tobacco leaf 
blossoms still faces many challenges [3]. In 
addition, tobacco leaf flower tops will change in 
shape and color during the growth process, 
which also brings unpredictable difficulties to 
their spatial positioning and identification. With 
the rapid development of computer vision 
technology, image processing and pattern 
recognition technology are increasingly used in 
agriculture, industry, and daily life [4]. Binocular 
vision, as an important branch of computer 
vision, can obtain three-dimensional information 
of objects by simulating the human binocular 
vision mechanism, and can accurately position 
objects in space. Machine vision technology 
refers to empowering machines with visual 
judgment and visual analysis capabilities through 
image processing algorithms and image 
acquisition terminals, thereby prompting 
machines to complete complex operations [5]. 
Humans receive external information mainly 
through vision. Allowing robots to have human 
machine vision functions can greatly improve the 
machine's ability to receive external information. 
The emergence of machine vision technology has 
solved the high cost and low efficiency of manual 
operations and has high practical significance for 

the automation and modernization of 
agricultural production. 
 
Many scholars have conducted certain research 
on improving the picking efficiency of different 
crops. Dong et al. proposed an extension 
research method to optimize the classification 
and capture of robotic arm targets in extended 
visualization programs. The study required that 
the designed sorting robot must be able to 
effectively detect all goods in different storage 
environments. Based on the regression method 
of Single Shot MultiBox Detector (SSD) target 
detection, the three-dimensional target was 
reconstructed through the default unit. The 
results showed that the robot's accuracy in 
sorting goods increased by 79%, which 
contributed to the accuracy and efficiency of 
imports [6]. Hsieh et al. proposed to use Region 
Convolutional Neural Network (RCNN) and 
binocular imaging technology to spatially identify 
the maturity and position of tomato fruits. An 
image capture and target detection model was 
constructed, and then the three-dimensional 
position of the planted fruit was compared with 
the actual position. The correlation between the 
fruit sizes was calculated. The results 
demonstrated that the correct identification rate 
of ripe fruits was as high as over 95% [7]. 
Sverdlichenko et al. proposed a strawberry 
picking robot that combined You Only Look Once 
(YOLO) and RCNN to achieve low-price picking of 
strawberries. Multiple images of occluded 
strawberries were collected, and different 
models were used to identify strawberry picking. 
A stereo camera was used to position the 
strawberry in three dimensions. The results 
showed that the method constructed in the 
experiment could accurately capture the location 
of strawberries [8]. To improve the efficiency of 
sugarcane planting, Wang et al. proposed a bud 
positioning method based on computer binocular 
vision using grayscale horizontal projection to 
determine the position of the sugarcane stem 
segment and used color space conversion to 
determine the plane position of the bud. The 
method proposed had a matching accuracy of 
98% for seed sprouts, which provided a certain 
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basis for resisting damage to sprouts during 
automatic sugarcane planting [9]. 
 
With the continuous development of various 
computer technologies, binocular vision 
technology has gradually become a hotspot. For 
improving the accuracy of industrial robots in 
grabbing items, Wan et al. designed a large 
object grabbing means for industrial robots with 
binocular vision guidance. The three round holes 
of the object were used as fine features to 
determine the position and posture of the object. 
The designed system had high robustness and 
the positioning accuracy reached -1 mm [10]. To 
improve the accuracy of industrial robot 
positioning, a new robot technology based on 
binocular vision technology was developed to 
analyze the principle of position positioning, 
capture the characteristics of the target using 
URF, and introduce the back propagation neural 
network to locate the target position. The 
method was efficient and effective in feature 
extraction speed [11]. To monitor the residential 
safety of the elderly, Zhu et al. proposed a 
method based on binocular vision positioning. 
Image data was used to construct an imaging 
model, and feature extraction was completed to 
estimate the camera movement and status of the 
elderly. The proposed method could achieve 
precise positioning of indoor activities of the 
elderly and effectively improve the ability of real-
time monitoring [12]. To improve the accurate 
capture of substation features by live working 
robots during their work, Jian et al. proposed an 
outdoor three-dimensional reconstruction 
method that combined multi-dimensional laser 
and binocular vision. Multi-line lasers were used 
to capture artificial features, and a natural light 
filtering method based on frame difference was 
used to reduce the interference of natural light 
on the laser. The results showed that the 
proposed method could effectively achieve 
three-dimensional reconstruction of the target 
[13]. 
 
Binocular vision technology has been successfully 
applied in many fields, such as robot navigation, 
three-dimensional reconstruction, and virtual 

reality. However, in the agricultural field, 
especially in tobacco leaf production, the 
application of binocular vision technology is still 
in its infancy, which provides new inspiration for 
the automatic positioning and identification of 
tobacco leaf flower tops. Some scholars believe 
that the two-dimensional maximum entropy 
image segmentation algorithm improved by the 
Genetic Algorithm (GA) processing the initial 
image. Compared with the one-dimensional 
threshold segmentation algorithm, it considers 
not only the one-dimensional characteristics of 
the image grayscale histogram, but also the 
spatial neighborhood information of the pixel 
space, and therefore, reduces the computational 
complexity and improves the computing 
efficiency. Other scholars pointed out that CNN 
could have relatively ideal results in different 
data sets. It not only has good generalization 
performance, but also can greatly reduce labor 
costs and improve detection accuracy through 
automatic learning. With the advent of the 
artificial intelligence era, computer vision 
regarding the spatial position and identification 
of tobacco leaf flower tops has gradually become 
a breakthrough point in the study of traditional 
agriculture. This study proposed a method for 
spatial positioning and identification of tobacco 
leaf blossom tops based on binocular visual 
communication and used CNN to optimize the 
recognition of tobacco leaf blossom tops to 
provide technical support for the automated 
production and intelligent management of 
tobacco leaves. 
 
 

Materials and Methods 
 

Binocular visual communication system design 
The tobacco leaf blossom tops information 
collection robot consists of two main 
components: software design and hardware 
design. The software aspect primarily 
encompasses the design of the human-computer 
interaction interface, image processing 
algorithms, and installation of hardware drivers. 
The hardware component involves the utilization 
of a binocular camera, along with the design of 
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the infrared emission module, information 
processing system, and image acquisition [14]. 
The overall framework design was illustrated in 
Figure 1. 
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Figure 1. Overall framework design of binocular machine vision 
system. 

 
 
The workflow of the tobacco leaf blossom tops 
information collection robot mainly includes two 
steps. The first step involves capturing the image 
signal of the target object, which is achieved 
through the utilization of technologies such as 
infrared emission and image acquisition. 
Subsequently, the collected image signal is 
converted into a digital image and transmitted to 
the information processing system via a 
designated transmission path. Within the 
processing system, the image signal undergoes 
further processing. Finally, the system completes 
tasks such as object identification, data 
collection, and output prediction. The collected 
data is then presented to users through a user-
friendly human-computer interaction interface 
[15]. Tobacco leaf blossom tops information 
collection robots were required for collecting 
clear and complete images. The most common 
collecting chips currently were Charge Coupled 
Device (CCD) chips and Complementary Metal 
Oxide Semiconductor (CMOS) chips. Compared 
with CMOS, CCD has lower application cost and 
poor image quality. CMOS is significantly better 
than CCD in image processing and noise 
reduction and anti-interference. In particular, the 
latest CMOS chip has a lower price. Therefore, 
CMOS clearly exceeds CCD in terms of overall 
performance. Due to its superior image signal-to-
noise ratio and resolution, CMOS has emerged as 

the preferred sensor chip for image acquisition, 
gradually replacing other comparable products. 
This study utilized CMOS chips as the image 
acquisition tool. The corresponding hardware 
framework of the system was illustrated in Figure 
2. 
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Figure 2. Machine vision system hardware framework. 

 
 
The tobacco leaf blossom tops information 
collection robot vision system covered multiple 
modules. Among the signal acquisition tools used 
in the image processing module, color CMOS and 
infrared CMOS were employed. Color CMOS was 
primarily responsible for capturing color images, 
while infrared CMOS was utilized for collecting 
depth image signals. Once the image signals were 
acquired, the imaging processor converted them 
into digital images that could be recognized by 
the computer. The information control system 
was responsible for processing these digital 
images, employing both wireless and wired 
methods. The processed image results were 
transmitted to the computer terminal via the 
information control system and were then 
presented through a user-friendly human-
computer interaction interface. The specific 
devices used in the image acquisition and 
processing process include infrared CMOS 
cameras, color CMOS cameras, infrared 
transmitters, and tobacco leaf blossom tops 
information collection robots [16] with 1,280 (H) 
× 960 (V) resolution, 57° (H) × 43° (V) shooting 
angle, and a 15 fps frame rate. The image 
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resolution of the infrared CMOS camera was 320 
(H) × 240 (V), the depth detection domain was 
0.8-4 m, the frame rate was 30 fps. The tobacco 
leaf blossom tops information collection robot 
served as the carrying platform for this design, 
and the image processing of the entire process 
was completed on the computer. For efficient 
integration into the information collection robot, 
image processing necessitated a compact 
computer with high processing speed. The 
primary role of the vision system was to identify 
the target object and gather pertinent 
information. The software component operated 
within the Linux system, utilizing the 
programming function OpenCV and OpenGL 
(Figure 3). 
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Figure 3. Machine vision system software framework. 

 
 
The human-computer interaction interface and 
computing involved a series of 7 steps including 
system and interface initialization, data 
communication method determination, image 
display, CD image conversion, object status 
detection, data printing, and program closure. 
Upon launching the vision system and interactive 
interface, the user selected the desired data 
connection method (wired or wireless) and 
configured the corresponding IP address. 
Subsequently, the computer terminal displayed 
the relevant image information with color images 
being converted into depth images [17]. Once the 
image conversion was complete, the visual 
system collected the necessary data. The 
collected data was then transmitted back to the 
computer for user-friendly viewing, and the data 

results were printed to establish the data analysis 
outcomes. The program was closed to conclude 
the operations. 
 
Spatial positioning and identification method of 
tobacco leaf blossom tops 
The one-dimensional OTSU employs 
enumeration to identify the gray level of the 
image being processed, aiming to find the image 
segmentation threshold when the objective 
function value is maximized. However, the one-
dimensional version is susceptible to noise points 
and fails to effectively filter out noise 
interference [18]. The two-dimensional OTSU 
was hired to perform threshold segmentation on 
the original image, enabling the determination of 
the desired range. For the exhibition of 
mathematical expression, it was assumed that an 
image I existed with size of M × N. The gray level 
and the average gray value of its neighborhood 
were denoted as I(x, y) and g(x, y) as depicted in 
formula (1). 
 

1 1

1 1

1
( , ) ( , )

9 m n
g x y l x m y n

=− =−
= + +   (1) 

 
Formula (1) was for the average gray value. 
 

lg

lg

f
p

M N
=


 (2) 

 

In formula (2), lgp  was the joint probability 

density. l  represented simultaneous occurrence 

frequency in the target lgf . g was the average 

gray value of the neighborhood. The two-
dimensional grayscale histogram could be 
divided into four distinct regions that were 
determined by the grayscale values of the 
neighborhood center point (s) and the 
neighborhood average grayscale (t). Regions 1 
and 2, positioned diagonally, represented the 
target area and the background area, 
respectively. Regions 3 and 4, located far from 
the histogram, corresponded to noise areas. The 

probability distribution ( tp ) of the target area 

was   calculated   using    formula  (3),   while   the 
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Figure 4. Two-dimensional threshold image segmentation with GA. 

 
 

probability distribution ( bp ) of the background 

area was calculated using formula (4). 
 

lg0 0

s t

t l g
p p

= =
=   (3) 

 
1 1

lg1 1

L L

b l s g t
p p

− −

= + = +
=   (4) 

 

The mean vector Au  was possible to be derived 

through formulas (3) and (4) as shown in formula 
(5). 
 

   (5) 

 
Given that noise points were featured with a low 
distribution probability, this study disregarded 
such noise points. Consequently, the objective 
function calculation formula for the OTSU was 
assumed as formula (6). 

 
(6) 

 

where the optimal threshold ( , )s t  was 

determined, where the objective function value 

( , )J s t  was maximized. To enhance the two-

dimensional threshold image segmentation 
algorithm proposed earlier, this study 
incorporated a genetic algorithm. The genetic 
algorithm employs eight-bit binary coding, 
representing the threshold pair ( s ) as a vector 

1 2 3 8 16[ , , ,..., ,..., ]a t t t t t= . The first eight bits 

correspond to the binary code, while the last 8 of 

them represent the second threshold's binary 
encoding. By utilizing crossover and mutation 
operators, it optimizes the calculation of the 
optimal threshold. This approach introduces new 
data into the calculation database, increasing 
diversity and enabling the identification of 
global-scale issues, which is a feasible solution to 
avoid falling into local optimum [19]. The 
algorithm flow of the two-dimensional threshold 
segmentation improved by the genetic algorithm 
designed in this study was displayed in Figure 4. 
The threshold was set in an eight-bit binary 
encoding form, and the number of individuals in 
the population was selected to be 30 to 50. The 
corresponding function of the optimal threshold 
was hired to be the fitness function, that was 
formula (6) to calculate the individual fitness 
value under this condition. Under the settled 
iteration conditions, assumption that if it was 
satisfied, the optimal solution was considered to 
be the individual. Otherwise, the genetic 
algorithm proceeded with selection, crossover, 
and mutation operations to generate a new 
offspring population, whose fitness was then 
recalculated using an appropriate fitness 
function until the optimal individual was selected 
for decoding. 
 
Spatial recognition optimization technology for 
CNN 
Assuming that the input image size was 224 × 
224, the response matrix would be obtained after 
each layer of neural network. After completing 
the tobacco leaf blossom tops image style 
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extraction, the RGB (Red, Green, Blue) space 
image was converted into an HSV (Hue, 
Saturation, Value) color space image. The RGB 
difference method determines the detecting 
area. The digital image is composed of RGB gray 
scales. The calculation that was built for letting 
RGB images change into HSV color space was 
formula (7). 
 

, ,

60 , ( ) ( );

60 6 , ( ) ( );

60 2 ,

60 4 ,

underfined if m n

G B
if m R and G B

m n

G B
if m R and G B

m n
H

B R
ifm G

m n

R G
ifm B

m n

=


−
  = 

−
 − 
  + =  

−  
= 

−   + =  − 


−   + =  − 



 (7) 

 
where m = max(R, G, B), n = min(R, G, B), V = m, 

1 /S n m= − . The gray image 1
V  was processed by 

histogram equalization to obtain brightness V , 
and then an image with uniform grayscale was 

obtained through mapping 1 ( 2
V ). The 

cumulative distribution function of each gray 
level probability was displayed in formula (8). 
 

k k
j

j=0 j=0

n
(rk)= = Pr rj

n
K

S T=   （ ） (8) 

 

where 2
V  of 1

V  total possible gray levels was 

represented by L . The total number of pixels n  

in T , the k
r  image k

n , was k
r . k

s  was the 

probability of the gray value of the original 
image. The calculation formula for converting 
HSV color space into RGB space was shown 
formula (9). 
 

1

1

1

1

1

1

( , , ), 0;

( , , ), 1;

( , , ), 2;

( , , ), 3;

( , , ), 4;
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v z x c
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x v z c

x y z c

z x v c

v x z c
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 
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 
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=  

（R ,G ,B）=  (9) 

where 1
mod 6

60

H
C

 
=  
 

, 2 1
60

H
C C

 
= − 
 

. After 

nonlinear filter combination, when the l  layer 
model was defined that it existed with N  
different filters, then this l layer also had feature 
map of identical N  outputs. The feature output 

value of l

ik
F , the k th position in the l th layer was 

k . The vectorized white noise image and photo 
image were set to be represented by p  and x , 
respectively. The corresponding feature 
response matrices of the white noise image and 
photo image of the first layer were F  and P , 
respectively. Then the average error loss function 
expression of the response matrix could be 
expressed as: 
 

21
( , , ) ( )

2

l l

content ik ik
ik

L p x l F P= −  (10) 

 
The layer vectorized feature map and the inner 

product between each other were 
l

ij
G  

represented by references, and the overall style 
of the image could be represented by the 
combined Ram matrix. Since the image format of 
the input model was an RGB image, the 3 × 3 filter 
could easily correspond to the 3 × 3 area with a 
gray level of 0. The filter would not cause changes 
in the feature response values. The feature 
response values would only be affected by the 
neural network interference in primitive values. 
When the base value was 0, the relationship 
between the two filters had no value [20]. In 
order to prevent this situation from happening, 
formula (11) was used to improve the mutual 
relationship. 
 

l l' l' l l

ij ik jk jk ikl l

jk ik

1 1
= + ( + )

+1 +1k k

G F F F F
F F

= （ ）  (11) 

 

When 
l

jk
F  value was 0, the value l'

ik
F  was not 

affected by the filter. If 
l

jk
F  value was large, then 

the value l'

ik
F  was less affected by the filter. The 

study used the gradient descent method to 
obtain the characteristics of tobacco leaf blossom 
tops images, and used white noise images and 
Gram matrix to minimize the root mean square 
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to complete the matching [21]. Assume that the 
vectorized white noise image and the original 
tobacco leaf blossom tops image were 
represented by x  and a , respectively, the l  
corresponding Gram matrices of the white noise 
image and the original tobacco leaf blossom tops 

image of the layer were lG  and lA , respectively. 

The expressions of the corresponding loss 
function normalization processing and style loss 
could be expressed in formula (12). 
 

2

2 2
,

1
( )

4

l l

l ij ij
i jL l

E G A
N M

= −  (12) 

 

where l
w  was the weight value of each layer to 

the total loss. The gradient could be obtained. To 
study tobacco leaf blossom tops image style 
rendering of image content, it was necessary to 
further set the ratio of content loss and style loss, 
and then calculate the total loss (formula (13)). 
The overall loss was calculated by the mean 
square error of adjacent pixels to ensure the 
smoothness and visual effect of the image [22]. 
 

total content style noise
L L L L  = + +  (13) 

 

where noise
L , style

L , content
L , total

L  were the noise 

image pixel variable loss value, style image loss 
value, content image loss value, and overall loss 

value, respectively.  ,  ,   were the first three 

influencing factors, respectively. If /   ratio 

was larger, the noise image would be rendered to 
a higher degree. On the contrary, the generated 
image would be closer to the real image. The 
convolutional layer used to obtain the photo 
content was CONV4_2. CONV1_1, CONV2_1, 
CONV3_1, CONV4_1, and CONV5_1 were all 
convolutional layers used to obtain tobacco leaf 
blossom tops image style. 
 
Tobacco leaf identification test 
To verify the accuracy of the design algorithm in 
obtaining tobacco leaf blossom tops information, 
the visual system was employed to measure the 
quality and diameter of tobacco leaves. The 
tobacco leaf planting location selected for the 
experiment was Kunming City, Yunnan Province, 

China, and the tobacco variety selected was 
Yunyan 87 that is widely grown in China and is 
known for its good adaptability and high-quality 
tobacco leaves. To assess the visual system's 
performance in the tobacco leaf information 
collection robot, a control group was established 
to evaluate the system's effectiveness. The 
collected tobacco leaf information was 
presented externally through the human-
computer interaction interface, and the output 
data could be visualized after undergoing 
relevant processing. A set of 100 tobacco leaf 
blossom tops images was selected and divided 
into 10 random groups as sample data. The 
original images were segmented and subjected 
to feature pixel processing. The pixel annotation 
labeling method was used to determine the 
weight coefficient of the feature data. The 
segmentation algorithm was used to classify the 
tobacco leaf blossom tops of the control and 
image recognition groups.  

 
 

Results and discussion 
 
Tobacco leaf identification test results 
The measurement outcomes of tobacco leaf 
blossom tops information were presented in 
Table 1. The results showed that the visual 
system exhibited high measurement accuracy for 
tobacco leaf blossom tops, aligning closely with 
the actual measurement values. The processed 
image yielded a high true positive rate, indicating 
that the segmentation algorithm effectively 
identified tobacco leaf blossom tops (Table 2). 
This capability met practical operational 
requirements and established a foundation for 
subsequent tobacco leaf contour extraction. 
 
Image segmentation results 
Three image segmentation algorithms were 
encompassed in this study including the one and 
two-dimensional threshold image segmentation 
algorithm, and an improved version of the later 
one using GA. The GA parameters included a 
population size of 40 and 100 iterations. The 
selection operator was the roulette selection 
operator, while the crossover operator was two- 
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Table 1. The measurement parameters of tobacco leaf blossom tops. 
 

Tobacco leaf 
blossom tops 
image (set) 

Actual 
diameter 

(mm) 

Measurement 
diameter  

(mm) 

Relative 
error  
(%) 

Actual 
mass  
(%) 

Measurement 
quality  

(%) 

Relative 
error  
(%) 

1 17.61 17.43 1.034 2.38 2.42 1.661 

2 17.84 17.45 2.237 2.42 2.44 0.824 

3 18.95 19.08 0.786 2.84 2.81 1.072 

4 14.96 15.34 2.479 1.52 1.54 1.308 

5 13.81 14.02 1.499 1.34 1.35 0.752 

6 15.37 15.42 0.325 1.62 1.64 1.228 

7 13.08 12.87 1.633 1.34 1.28 4.725 

8 13.88 12.92 7.437 1.42 1.41 0.71 

9 18.21 18.72 2.726 2.62 2.52 3.985 

10 17.61 18.03 2.331 2.22 2.32 4.33 

 
 
Table 2. Tobacco leaf blossom tops identification test results. 
 

Tobacco leaf blossom tops image (set) True positive False positive Consistency 

1 97.836 1.999 95.918 

2 95.757 1.263 94.564 

3 98.939 1.394 96.128 

4 96.914 2.028 95.983 

5 98.715 1.533 94.128 

6 97.195 2.920 97.029 

7 97.915 1.416 98.918 

8 95.245 1.823 95.190 

9 94.923 2.568 94.615 

10 96.893 1.818 98.033 

Total 96.933 1.876 96.050 

 
 
point and the mutation operator was the uniform 
mutation operator. Both the crossover 
probability and mutation probability were 0.2. A 
rendering of grayscale image segmentation using 
different image segmentation algorithms was 
shown in Figure 5. After being processed by the 
image segmentation algorithm, the range of 
tobacco leaf blossom tops recognition in the 
image was more obvious. However, different 
algorithms yielded varying recognition area sizes 
and ranges. The six algorithms' running times for 
segmenting area 1 were 159 ms, 162 ms, 31,574 
ms, 34,327 ms, 180 ms, and 202 ms, respectively. 
It was evident that the one-dimensional OTSU 
exhibited image processing that was the highest 
speed among the objectives. The 3 others had 

slightly slower processing speeds, but the 
difference was not significant compared to the 
fastest objective. The two-dimensional OTSU 
algorithm and the two-dimensional maximum 
entropy algorithm (2DME) demonstrated the 
slowest processing speeds. 
 
Comparison of centroid deviation distances of 
different segmentation algorithms for tobacco 
leaf image processing 
The comparison of the centroid deviation 
distance for the segmented tobacco leaf image 
was illustrated in Figure 6. The centroid deviation 
refers to the Euclidean distance between the 
centroid position. When processing area 1 
images,    the    2DME    exhibited    the    smallest 
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               (1)                     (2)                                 (3) 

 

     (4)                    (5)                                   (6)      (7) 
 
Figure 5. Segmentation outcomes. (1) Initial image, (2) One-OTSU, (3) One-mex, (4) Two-OTSU, (5) Two-mex, (6) GA + Two- OISU, (7) GA + Two-
mex. 
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Figure 6. Centroid deviation distance of different segmentations for tobacco leaf blossom tops image. 

 
 
deviation distance of 0.72 m. For area 2, the GA + 
2DME achieved the smallest value of 0.81 m. The 
2DME demonstrated the smallest value of 0.95 m 
when processing area 3 images. Lastly, when 
processing area 4 images, the 2DME yielded the 

smallest deviation distance of 1.01 m. 2DME 
demonstrated the best effect in processing 
images, followed by the GA + two-dimensional 
maximum entropy algorithm. However, the 
2DME  exhibited  slow  image  processing  speed. 
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Table 3. Comparison of centroid deviation distance of tobacco leaf blossom tops image processing. 
 

Area 1 2 3 4 

Algorithm K-means FCM K-means FCM K-means FCM K-means FCM 

Cluster center 
[97.52, 
23.51] 

[98.27, 
20.36] 

[98.78, 
45.33] 

[99.96, 
41.28] 

[100.58, 
73.75] 

[99.01, 
69.53] 

[99.68, 
90.42] 

[100.05, 
85.53] 

Center of mass 
position 

[32.35, 
4.41] 

[33.07, 
3.45] 

[34.18, 
4.62] 

[33.28, 
3.24] 

[34.39, 
4.92] 

[31.65, 
3.05] 

- - 

Center of mass 
deviation 

distance (m) 
0.77 0.56 1.33 0.8 1.67 1.65 - - 

Area (m2) 98.4 94.2 111.6 111.2 130.8 129.5 252.6 241.3 
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         (a) VGG network structure accuracy           (b) Illustration network structure accuracy 
 
Figure 7. Comparison of accuracy results between VGG network and Illustration network. 

 
 
Therefore, this study introduced GA + two-
dimensional maximum entropy algorithm, which 
demonstrated superior overall performance. By 
employing the K-means and FCM to process 
different areas, the results included the cluster 
center position and centroid deviation distance 
calculation. As the tobacco leaves mature, the 
accuracy also became smaller. The K-means 
calculated the centroid deviation distances for 
images in areas 1, 2, 3, and 4, resulting in 
distances of 0.77 m, 1.33 m, 1.67 m, and no data, 
respectively (Table 3). The FCM clustering 
algorithm calculated the centroid deviations for 
images in areas 1, 2, 3, and 4, yielding distances 
of 0.56 m, 0.80 m, 1.65 m, and no data, 
respectively. Compared to the K-means, the FCM 
demonstrated higher accuracy. Although both K-
means and FCM did not obtain specific 
coordinates for the cluster center point when 
processing the relatively large area 4 image, it 

displayed no impact on tobacco leaf blossom 
tops identification area calculation. The FCM 
achieved clustering accuracy of a higher value, 
resulting in identification areas of 94.2 m², 111.2 
m², 129.5 m², and 241.3 m² for the four regions, 
respectively. 
 
Comparison of accuracy and loss results of 
different models 
Comparing the accuracy at different regional 
scales, the accuracy results of the VGG grid and 
the illustration grid were shown in Figures 7(a) 
and 7(b), respectively. The style picture influence 
factor and content picture influence factor were 
set to ratios of 5, 10, and 20. The findings 
indicated that, as the regional scale and the 
influence factors increased, the model's accuracy 
initially showed a significant improvement, 
followed by a notable decline. For the illustration 
grid  ratios  of  5, 10, and 20, the 4.4, 3.7, and 3.4 
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       (a) Content image loss result     (b) Style image loss result 
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                 (c) Noisy image loss results               (d) Total loss results 
 
Figure 8. Content images, style images, noise images, and overall loss results. 

 
 
were the useful values of optimal scales of 
corresponding regions with 71.9%, 81.1%, and 
71.9% accuracy rates, respectively. For the VGG 
grid ratios of 5, 10, and 20, 3.7, 3.6, and 3.5 were 
the useful values of optimal scales of 
corresponding regions with 98.9%, 87.1%, and 
89.5% accuracy rate, respectively. When the ratio 
of style image impact factor and content image 
impact factor was 10, the accuracy rates of the 
two structures were similar with a maximum 
accuracy difference of only 6.0%. This study used 
the model loss value to judge the performance of 
tobacco leaf image recognition and Tensorboard 
to present the changing trend of the loss. The 
content image, style image, noise image, and the 
entire loss were displayed in Figure 8. The model 
loss value evaluated the quality of the generated 
image from a quantitative perspective, but it 
could also reflect the subjectivity of the image. 
Both the style image loss and the overall loss 
gradually decreased as the number of training 
times increased, and the loss value quickly 
reached the convergence value, which was 0 and 
2,000e + 6, respectively. At this time, the 
corresponding number of iterations was 
approximately 800 and 900, respectively. The 

noise image loss curve showed a rapid increase at 
first and then a slow convergence, and the 
convergence value was repetitive. The peak loss 
was 6.6e + 4. The loss value was smallest at 
around 400, 600, 700, and 900 iterations with a 
value of about 2,800e + 4. The convergence 
speed of content image loss was slow, and it 
could reach an optimal convergence value. There 
was a certain degree of repeatability in the loss 
value. 
 
 

Conclusion 
 

This research mainly used binocular visual 
communication image segmentation technology 
to study the spatial positioning and recognition of 
tobacco leaf blossom tops. The results showed 
that the visual system effectively identified 
tobacco leaves, as evidenced by the high true 
positive rate in the processed tobacco leaf 
images. The visual system also demonstrated 
high measurement accuracy for tobacco leaf 
blossom tops, aligning closely with the actual 
measured values. Additionally, the image 
segmentation algorithm proposed in this study 
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outperformed conventional algorithms like the 
one-dimensional OTSU algorithm, exhibiting 
smaller centroid deviation distances and faster 
running speeds. When comparing the FCM and 
the k-means cluster analysis outcomes, the FCM 
achieved higher accuracy. When the ratios of the 
style image impact factor and the content image 
impact factor were 5, 10, and 20, the optimal 
regional scales corresponding to the Illustration 
grid were 4.4, 3.7, and 3.4, respectively, and the 
accuracy rates were 71.9%, 81.1%, and 71.9%, 
respectively. The grid was at ratios of 5, 10, and 
20, respectively. The corresponding optimal 
regional scales of the VGG grid were 3.7, 3.6, and 
3.5, and the obtained accuracy rates were 98.9%, 
87.1%, and 89.5%, respectively. The accuracy of 
the VGG grid had improved under the three types 
of parameter ratios, and when the ratio of the 
style image influence factor and the content 
image influence factor was 5, the accuracy rate 
increased the fastest with an accuracy rate of 
nearly 20%. This research displayed significance. 
But problems do exist. Less sample data and 
insufficient experiment accuracy were major 
defects. In future work, the sample data of the 
experiment will be increased. 
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