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With the rapid development of deep learning technology, its application in the field of agricultural product quality 
assessment, especially in the quality classification and classification of tobacco leaves, has been widely concerned. 
As an important cash crop, the accurate evaluation of tobacco leaf quality is very important for the development 
of the entire tobacco industry. The traditional tobacco leaf quality assessment method relies on manual 
experience, which is not only inefficient, but also easy to be affected by subjective factors. This study , based on 
deep learning theory, aimed at the limitations of traditional methods in tobacco quality assessment and 
investigated in detail the deep learning method for tobacco quality classification and classification based on 

images. The empirical research on data acquisition, preprocessing, model construction, training, verification, 
testing, and optimization was carried out systematically. The results showed that the optimized deep learning 
model performed well in tobacco quality grading and classification tasks, and had higher accuracy, recall rate, and 
F1 scores than the existing manual methods. At the same time, a series of model optimization strategies were 
proposed, which laid a foundation for the further development and application of deep learning models in the 
agricultural field. In addition, this study also exposed issues such as computational resources and interpretability 
of deep learning models in practical applications, which would become the direction of future research. 
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Introduction 
 
Tobacco is an important cash crop; the quality of 
its leaves directly affects the economic value and 
use value of tobacco. Traditional tobacco quality 
classification methods mainly rely on manual 
judgment, which is low efficiency, high cost, and 
easy to be affected by subjective factors, 
resulting in unstable and inaccurate classification 
results. Therefore, the development of an 
automatic, rapid, and accurate classification of 
tobacco leaf quality has become an urgent need 
for industry and scientific research institutions. 

With the continuous progress of science and 
technology, deep learning as an important 
branch of artificial intelligence has made 
remarkable achievements in many fields such as 
image recognition, natural language processing, 
and recommendation system. In the field of 
image classification, deep learning, especially 
convolutional neural networks (CNN), has 
become the core technology, which can 
effectively extract image features and achieve 
accurate classification. The features of CNN such 
as local perception, weight sharing, and spatial 
hierarchy show their powerful functions in many 
applications including medical image analysis, 
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automatic driving, and face recognition. In recent 
years, deep learning technology has also been 
gradually applied to the agricultural field to 
achieve accurate classification and classification 
of crop quality, thereby improving the efficiency 
and quality of agricultural production. While it 
has been used in other crop quality assessments, 
deep learning is still a relatively new endeavor in 
tobacco leaf quality classification. In the study of 
tobacco quality classification, deep learning and 
image processing technology have been widely 
used and achieved remarkable results. Numerous 
scholars have demonstrated the development of 
this field through different methods and 
techniques. Chen et al. provided a new 
perspective for quality classification in terms of 
machine vision and expert knowledge, which had 
direct implications for tobacco quality 
classification [1]. Wu et al. conducted quality 
classification through deep learning network 
combined with X-ray technology, demonstrating 
the ability of deep learning in accurately 
identifying complex image data [2]. In addition, 
Kappacher et al. provided a valuable reference 
for tobacco leaf quality assessment by comparing 
the application of portable and benchtop NIR 
sensor technology in black truffle quality 
assessment [3]. The CMENet model proposed by 
He et al. was especially targeted at tobacco 
classifying, demonstrating the potential of deep 
learning technology for customized application in 
specific fields [4]. Similarly, researchers 
conducted effective quality classification of 
tobacco leaves in the fields of computer vision 
and deep learning, respectively, emphasizing the 
importance of deep learning techniques in 
improving classification accuracy and efficiency 
[5, 6]. Further, scientists provided new insights 
on image classification and deep learning model 
optimization, which was of great significance for 
improving the accuracy and efficiency of tobacco 
quality classification [7-9]. Other studies 
demonstrated the application of the improved 
MASK RCNN algorithm, near infrared 
spectroscopy technology, and mathematical 
model in tobacco leaf analysis, further proving 
the feasibility and effectiveness of these methods 
in practical applications [10-12].  

The existing literatures show that deep learning 
and image processing technology have great 
application potential and broad development 
prospects in tobacco quality classification. These 
studies not only provide new technical means 
and theoretical basis for tobacco quality 
classification, but also provide valuable reference 
and enlightenment for the research in related 
fields. [13, 14]. However, the application of deep 
learning technology in tobacco leaf quality 
classification still faces challenges such as data 
collection, model construction, and result 
evaluation, which needs more in-depth research 
and exploration. This study aimed to explore the 
application possibility of deep learning 
technology in automatic classification of tobacco 
leaf quality and improve the accuracy and 
efficiency of tobacco leaf image classification by 
using deep learning model to automatically 
extract the features of tobacco leaf images and 
perform accurate quality classification of tobacco 
leaf images. The results of this study would 
significantly improve the efficiency and accuracy 
of tobacco leaf classification, thereby enhancing 
the competitiveness and sustainability of the 
tobacco industry. 
 
 

Materials and methods 
 
Data source and collection methods 
The data source for this study were mainly from 
tobacco growing bases and processing plants in 
different regions in the provinces of Yunnan, 
Henan, and Guangdong, China to ensure the 
authenticity, diversity, and universality of the 
data. The collected tobacco data covered 
different varieties, growth stages, and processing 
states. Canon EOS 5D Mark IV digital camera 
(Canon, Tokyo, Japan) and Epson Perfection V600 
portable scanner (Seiko Epson Corporation, 
Nagano, Japan) were used for image acquisition 
and scanning to ensure high quality and clarity of 
the images. The images were captured under the 
natural light during the daytime between 9 am 
and 4 PM to obtain the best lighting effect. The 
solid color background cloth was used to control 
the background noise, ensure the purity of the 
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image background, highlight the characteristics 
of tobacco. Multiple tobacco varieties including 
Virginia, Burley, and Oriental were collected, 
covering all growth stages from germination to 
maturity and including raw and roasted tobacco 
leaves. A total of 50,000 images were collected 
with at least 10% of each variety, growth stage, 
and processing state. All collected images were 
graded by tobacco experts for quality and labeled 
with the variety, growth stage, processing state, 
and quality grade to ensure accuracy. The 
diversity of these samples helped the model to 
understand the characteristics of tobacco leaves 
more fully in different varieties and states, thus 
improving the accuracy of classification and 
grading. 
 
Data range and diversity 
Special attention was paid in this study to the 
range and diversity of data in the data collection 
stage to ensure the generalization ability and 
robustness of the model. The data collection 
covered major tobacco-growing regions in China, 
including Yunnan, Henan, and Guangdong 
provinces. The various growth stages of tobacco 
including germination, growth, flowering, and 
maturity were included in the data collection. 
The images of tobacco leaves in different 
processing states such as ecology and baking 
were also included. Several different tobacco 
varieties were selected for data collection to 
obtain differences in shape, color, texture, etc. 
The images were captured under the same 
environmental conditions at different points in 
time to obtain different light and shadow effects. 
Under each classification, enough images were 
guaranteed, so that each class of data had a rich 
internal diversity. Through such data collection 
methods and strategies, this study ensured the 
breadth and diversity of the data set and 
provided a strong support for the construction 
and training of tobacco leaf quality classification 
models with superior performance [15-16]. 

 
Data preprocessing 
After data collection, the raw images went 
through a quality check and those images that 
failed this quality check were eliminated from 

this study. All qualified images were then 
cropped and resized to ensure consistent size 
and resolution of the input model by using Adobe 
Photoshop (Adobe, SAN Jose, California, USA).  
The median filtering method was applied to 
process the noise and outlier in the images using 
MATLAB software (MathWorks, Inc., Natick, 
Massachusetts, USA). Each tobacco leaf image 
was manually labeled according to quality 
standards. The labeling process was done 
through the assistance of semi-automatic tools to 
improve the accuracy and efficiency of labeling.  
 
Data enhancement technology 
To further enhance the generalization ability of 
the model, the cleaned data set was enhanced to 
generate new and different image data through 
various transformations of the original image, 
thus expanding the size of the data set. This 
process would help the model learn more feature 
information, prevent overfitting, and improve 
the model's performance on previously unseen 
data. The main data enhancement techniques 
used in this study included rotation, flip, zoom, 
cropping, and color transformation of images. 
Rotation of the image at different angles could 
increase the tolerance of the model to angle 
changes, while randomly cropping a portion of 
the image could force the model to learn features 
at different locations. By applying these multiple 
data enhancement techniques, this study 
significantly increased the diversity and size of 
the training dataset to improve the classification 
performance and stability of the final model. 
 
Model Construction 
Based on the characteristics of the experimental 
data, the Convolutional Neural Network (CNN) 
was chosen as the basic model. CNN has excellent 
image feature extraction ability and is a common 
model applied to image classification tasks in 
deep learning.  
 
The CNN basic model structure selected by this 
study was composed as follows: (1) Input layer: it 
received the pixel value of the tobacco leaf image 
and set the image size to H × W. Then the input 
layer dimension was H × W × 3; (2) Convolutional 
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layer: Multiple convolutional nuclei were used to 
extract image features. The size of convolutional 
nuclei was assumed as F × F and the number of 
convolutional nuclei was K; (3) Pooling layer: It 
carried out the undersampling to reduce the size 
of the feature map; (4) Fully connected layer: It 
flatten the feature map and classified it. 
Considering the characteristics of tobacco leaf 
images and the complexity of classification tasks, 
the following network structure was designed: 
(1) Input layer was 256 × 256 × 3; (2) Convolution 
layers 1 and 2 were convolution kernel size of 3 × 
3 with quantity 32, and convolution kernel size of 
3 × 3 with quantity 64, respectively, and both 
activated function of rectified linear unit (ReLU); 
(3) Pooling Layers 1 and 2 were both maximum 
pooling with pooling window of 2 × 2; (4) Full 
connection layer was 128 nodes and the function 
ReLU was activated. The output layer included 
the number of nodes that were the number of 
categories, and the Softmax function was 
activated. The model structure then could be 
expressed as: 
 

( ) ( )1 1 2 2 Input  Output C P C P FC→ → → → → →  

 
where C1 and C2 were the convolutional layers. P1 
and P2 were pooled layers. FC was the fully 
connected layer. Through this network structure, 
the local features of tobacco leaf images could be 
fully extracted and efficiently classified. In 
subsequent experiments, the research would 
adjust the network parameters to find a balance 
between classification accuracy and model 
complexity. 

 
Model training  
Stochastic Gradient Descent (SGD) was applied as 
the optimizer in this study, and its update rules 
were as follows: 
 

( )1t t tJ   + = −      (1) 

 

where t  was the value of the parameter 

iteration in round t .   was the learning rate, and 

( )tJ   was the gradient of the loss function J  

with respect to the parameter 
t . The Loss 

function chosen in this study was Cross-Entropy 
loss, whose expression was shown in the 
following equation (2): 
 

( )
1 1

( ) log
N C

ij ij

i j

J y p
= =

= −    (2) 

 
where N  was the total number of samples. C  

was the total number of classes. 
ijy  was the 

value of the true label of the first i  sample on the 

first j  class. 
ijp  was the prediction probability 

of the model for the first i  sample to belong to 
the first j  class. 

 
In the study, hyperparameters such as Batch Size, 
Learning Rate, and Epochs were set, and 
overfitting was avoided by Early Stopping, i.e. 
training would be stopped when the 
performance on the verification set would no 
longer improve after a certain number of rounds. 
To obtain better model performance, some key 
hyperparameters were adjusted in this study. 
The main hyperparameters to be adjusted 
included (1) Learning Rate: the step length of 
updating model parameters was controlled. The 
study started from 0.1 and gradually decreased 
to observe the change of model performance; (2) 
Batch Size: it determined the number of samples 
used for each parameter update. Different sizes 
such as 32, 64, and 128 were tried to find a 
balance between model convergence speed and 
performance; (3) Training rounds (Epochs): the 
number of times the entire data set was used for 
training. A large initial value was set, and the 
actual number of training rounds was 
determined by the early stop method. By 
gradually adjusting these parameters and 
observing the performance on the verification 
set, the research gradually found a set of 
hyperparameter combinations that made the 
model perform better. 
 
Model verification 
In the process of model training and parameter 
adjustment, the method of cross-validation was 
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adopted to avoid model overfitting and select the 
model with the best performance. The process of 
cross-validation could be expressed as follows: 
 

( )
1

1
( ) 1  Error 

k

i

i

CV k
k =

= −       (3) 

 

where k  was the selected fold, and Errori  was 

the verification error rate for the i  fold. The 
study performed a 5 fold cross-validation before 
this model was put to further verify on the test 
set and compare the performance with other 
existing models to ensure that the model in this 
study was indeed superior. 

 
Model testing and evaluation 
The model's performance on a separate data set 
was tested. The test data set was randomly 
selected from the data set of this study but was 
not used for training or validation of the model, 
thus ensuring the impartiality of the evaluation 
results. The model was tested by batch forward 
propagation. Given a batch of tobacco leaf 
images, the model generated a prediction of the 
corresponding quality level, which was compared 
with real labels to calculate the accuracy of the 
model on the test data set. The model was 
evaluated not only based on accuracy, but also on 
several other key metrics, including recall, 
accuracy, and F1 scores. These metrics provided 
a more comprehensive assessment of model 
performance. For accuracy, the ratio of the 
number of correct predictions to the total 
number of predictions was calculated using 
equation (4). 
 

 Number of Correct Predictions 
 Accuracy 

 Total Number of Predictions 
=   (4) 

 
The recall rate, also known as true rate, was 
calculated using equation (5). 
 

 True Positives 
 Recall 

 True Positives  False Negatives 
=

+
     

(5) 
 

The precision rate was calculated using equation 
(6). 

 True Positives 
 Precision 

 True Positives  False Positives 
=

+
      (6) 

 
The F1 score was the harmonic average of 
accuracy rate and recall rate, which was 
calculated using equation (7). 
 

 Precision  Recall 
1 2

 Precision  Recall 
F


= 

+
     (7) 

 
 

Results and discussion 
 

Model performance analysis 
The performance changes of the model on 

the verification set under different values of 
hyperparameters were shown in Figure 1, where 
the number of training rounds was set to 50 
times. By comparing the performance of the 
model under different parameter combinations, 
the results showed that, when the learning rate 
was 0.01, the batch size was 128, the accuracy of 
the model on the verification set reached 88.9%, 
and the loss value was 0.28, which was the best 
performance. Through the analysis of cross-
validation, the validation accuracy and validation 
loss of the model on different folds were 
relatively stable. The average validation accuracy 
of the final model was 87.96%, and the validation 
loss was 0.304 (Figure 2). The results confirmed 
that the model selected by parameter 
adjustment had good generalization ability and 
was suitable for classification prediction of 
unknown data. Through in-depth analysis, it was 
found that the model performed well on some 
categories of leaf images, while it did not perform 
well on others. The results demonstrated that the 
model had a high recognition accuracy for images 
of category A, but a low recognition accuracy for 
images of category C (Figure 3). To 
comprehensively evaluate the performance of 
the model, this study mainly adopted three 
evaluation indexes including accuracy rate, recall 
rate, and F1 score. The results showed that there 
were differences in the performance of the 
model in different categories (Figure 4). Category 
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A had the best performance with an accuracy of 
92.5%, and F1 score of 0.917, indicating that the  

 
 

Figure 1. Key hyperparameter adjustment.  

 
 

 
 
Figure 2. The model verification results of each fold. 

 
 
model had a good classification effect for this 
category. However, for class C, the accuracy of 
the model dropped to 84.7% and the recall rate 
was 82%, which could be attributed to the higher 

complexity of image features or insufficient 
sample size for the class. Based on these 
evaluation results, the research could further 
analyze the performance bottleneck of the model 
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and propose targeted improvement strategies to 
improve the classification performance of the 
model [17].  

 

 
 
Figure 3. Accuracy of the model in each category. 

 
 

 
 
Figure 4. The performance of the model in each category. 

 
 
Further analysis of the causes of wrong 
prediction demonstrated that the model mainly 
showed problems in the following aspects: 
 

(1) Insufficient feature extraction: When the 
model processes some leaf images with complex 
textures and shapes, the feature extraction was 
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insufficient, resulting in a decrease in recognition 
accuracy. 
 
(2) Class imbalance:  

The training data had a small number of samples 
for some categories, which might lead to poor 
performance of the model in these categories. 

 
 
Figure 5. Comparison between this model and the other three existing methods.  

 
 
(3) Overfitting:  
The model performed well on the training set, 
but degraded on the test set, which might be 
caused by the phenomenon of overfitting.  
 
Based on the above analysis, this study put 
forward the following suggestions to improve the 
model performance: 
 
(1) Enhanced feature extraction capability:  
The model could improve the feature extraction 
capability of complex images by introducing 
more advanced feature extraction network 
structure or improving the existing network 
structure. 
 
(2) Solve the category imbalance problem: 
It could be done through data enhancement 
technology, artificially synthesizing some 
samples of a few categories, or using resampling 
method to increase the weight of a few 
categories of samples in training. 
 
(3) Prevent overfitting:  

More stringent model regularization strategies 
could be adopted such as Dropout, L1/L2 
regularization, etc. to mitigate the phenomenon 
of overfitting. 
 
Combined with the evaluation and in-depth 
analysis of the model performance, the 
researchers had a more comprehensive 
understanding of the strengths and weaknesses 
of the model, which would help the researchers 
to continuously optimize the model in the 
subsequent work and improve its performance in 
image classification tasks. 
 
Comparison with existing methods 
The study further compared the performance of 
designed model with that of other existing 
methods to show the advantages and rooms for 
improvement of this developed method in image 
classification tasks [18, 19]. Three existing 
methods were employed to compare with the 
model of this study in terms of accuracy, recall 
rate, and F1 score (Figure 5). The results showed 
that this model outperformed other existing 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 16:247-257 

 

255 

 

methods on all three evaluation indicators. 
Compared with the nearest method A, the 
accuracy of this model was improved by 3.2%, 
and the F1 score was also significantly improved. 
To better understand these differences, the main 
characteristics and coping strategies of each 
approach were analyzed. The results 
demonstrated that this model achieved excellent 
performance in image classification tasks by 
using advanced deep learning theory and 
combining with effective data preprocessing 
strategies, which proved that this method was 
effective and beneficial in some aspects. 
However, the results also revealed possibilities 
and directions for further optimization and 
improvement of model performance such as 
further exploration of different model 
architectures, optimization algorithms or loss 
functions. 
 
Model optimization strategy 
Based on the results of this study, the following 
possible optimization strategies and directions 
were identified. 
 
(1) Improved data enhancement techniques: 
Although a variety of data enhancement 
techniques had been adopted in this study, 
further exploration of new image transformation 
methods such as color dithering, more complex 
image rotation, and scale transformation can 
further enrich the diversity of training data, 
which not only helps to improve the 
generalization ability of the model, but also 
hopefully reduces the risk of overfitting, thus 
achieving better classification results on more 
previously unseen image samples. 
 
(2) Model architecture adjustment:  
Although the current deep learning model 
performed well in tests, by adjusting the model 
architecture such as increasing the network 
depth, the number of convolutional layers or fully 
connected layers, or introducing advanced 
modules such as residual blocks and attention 
mechanisms, more complex features in the 
image can be captured more effectively. This 
architectural adjustment is expected to further 

improve the accuracy of the model when 
processing complex images. 
 
(3) Hyperparameter tuning: 
Using grid search, Bayesian optimization, and 
other methods, the model's hyperparameters 
such as learning rate, batch size, and weight 
attenuation can be further optimized. Finding a 
combination of parameters that is more suitable 
for the current task is the key to improving the 
performance of the model. 
 
(4) Ensemble learning:  
Combining the prediction results of different 
models can obtain more robust classification 
effects. Applying ensemble learning methods 
such as Bagging, Boosting, or Stacking can 
effectively improve the accuracy and robustness 
of the model, especially in the face of diverse and 
complex data sets. 
 
(5) Use of semi-supervised learning or self-
supervised learning:  
Considering that it may be difficult to obtain high-
quality labeled data, this study can explore semi-
supervised learning or self-supervised learning 
methods. These methods use a large amount of 
unlabeled data for model training, which can 
improve the learning effect and prediction 
accuracy of the model with limited labeled data. 
 
By implementing the above optimization 
strategies, this study is expected to further 
improve the performance of the model in 
tobacco leaf image classification tasks and meet 
the application requirements of higher 
standards. The exploration of these strategies 
not only has a direct positive impact on current 
research, but also provides valuable reference 
and enlightenment for future research in related 
fields. 
 
 

Conclusion 
 
This study constructed a model based on deep 
learning and discussed the model’s application 
and optimization in image classification, and 
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comprehensively and systematically conducted 
research on theoretical basis, data processing, 
model construction, and optimization. In the 
stage of data collection and pre-processing, the 
collection method, range, and diversity of data 
were elaborated, and advanced data cleaning, 
labeling, and enhancement techniques were 
adopted to ensure the quality and efficiency of 
model training. In the process of model 
construction, after rigorous model design, 
parameter adjustment, verification and 
selection, this study successfully constructed a 
deep learning model with excellent performance. 
Through comparison and analysis with existing 
methods, the model demonstrated excellent 
performance on multiple indicators such as 
accuracy, recall rate, and F1 score, which verified 
the effectiveness and feasibility of deep learning 
in image classification tasks. Based on the results 
of model performance analysis, a series of model 
optimization strategies were proposed including 
improving data enhancement technology, model 
architecture adjustment, hyperparameter 
tuning, adopting ensemble learning, and 
introducing semi-supervised learning or self-
supervised learning, etc. to further improve the 
generalization ability and robustness of the 
model and meet more stringent application 
requirements. The results of this study not only 
provided a new and effective method for the field 
of image classification, but also laid a solid 
foundation for the further development and 
application of deep learning. However, the study 
also recognized that, despite the model's 
excellent performance, problems such as 
computational resources, complexity of data 
acquisition and processing needed to be 
considered in practical applications, and the 
interpretability of deep learning models 
remained a challenge. In future work, we will 
further explore the optimization direction of the 
model, improve the practicality and 
interpretability of the model, and promote the 
wide application of deep learning in more fields. 
 
 

References 
 

1. Chen MC, Liu H, Zhang SY, Liu ZY, Mi JP, Huang WJ, et al. 2023. 
Spirits quality classification based on machine vision 
technology and expert knowledge. Meas Sci Technol. 
34(5):055405. 

2. Wu ZY, Xue QL, Miao PQ, Li CF, Liu XL, Cheng YK, et al. 2023. 
Deep learning network of amomum villosum quality 

classification and origin identification based on x-ray 
technology. Foods. 12(9):1775. 

3. Kappacher C, Trubenbacher B, Losso K, Rainer M, Bonn GK, 
Huck CW. 2022. Portable vs. benchtop NIR-sensor technology 

for classification and quality evaluation of black truffle. 
Molecules. 27(3):589. 

4. He Q, Zhang X, Hu J, Sheng Z, Li Q, Cao S, et al. 2023. CMENet: 
A cross-modal enhancement network for tobacco leaf grading. 
IEEE Access. 11:109201-109212.  

5. Zhi R, Gao M, Liu Z, Yang Y, Zheng Z, Shi B. 2018. Color chart 
development by computer vision for flue-cured tobacco leaf. 
Sens Mater. 30(12):2843-2864. 

6. Lu M, Wang C, Wu W, Zhu D, Zhou Q, Wang Z, et al. 2023. 
Intelligent grading of tobacco leaves using an improved bilinear 
convolutional neural network. IEEE Access. 11:68153-68170.  

7. Boeschoten S, Catal C, Tekinerdogan B, Lommen A, Blokland M. 

2023. The automation of the development of classification 

models and improvement of model quality using feature 
engineering techniques. Expert Syst Appl. 213:118912.  

8. Li GY, Yang Y. 2023. Smart vision for quality apple classification 
using SURF-Harris optimizing techniques. Wirel Netw. 2023:1-

10. 
9. He Z, Chen G, Zhang Y, Zhao C, He P, Shi B. 2023. Pyramid 

feature fusion through shifted window self-attention for 
tobacco leaf classification. Expert Systems with Applications. 

230:120601.  
10. Zhang W, Wang Y, Shen G, Li C, Li M, Guo Y. 2023. Tobacco leaf 

segmentation based on improved MASK RCNN algorithm and 
SAM model. IEEE Access. 11:103102-103114.  

11. Zhang J, Liu W, Zhang H, Hou Y, Yang P, Li C, et al. 2018. 
Automatic classification of tobacco leaves based on near-
infrared spectroscopy and nonnegative least squares. J Near 
Infrared Spectrosc. 26(2):101-105.  

12. Zhang F, Bian W, Wang H, Yang B. 2023. Mathematical model 
for estimating the leaf area of cured dry tobacco using linear 
measurements. Cienc Rural. 53(11):e20220432. 

13. Malek NHA, Yaacob WFW, Nasir SAM, Shaadan N. 2022. 
Prediction of water quality classification of the Kelantan river 

basin, Malaysia, using machine learning techniques. Water. 
14(7):1067. 

14. Singh N, Ansari MA, Tripathy M, Singh VP. 2023. Feature 
extraction and classification techniques for power quality 
disturbances in distributed generation: A review. IETE J Res. 
69(6):3836-3851. 

15. Zhao YC, Kang ZL, Chen L, Guo YJ, Mu QS, Wang SY, et al. 2023. 
Quality classification of kiwifruit under different storage 
conditions based on deep learning and hyperspectral imaging 
technology. J Food Meas Charact. 17(1):289-305. 

16. Chen M, Yan G, Wang X, Huang Z, Shao X, Wu D, et al. 2019. 

Investigating the proteomic expression profile of tobacco 
(Nicotiana tabacum) leaves during four growth stages using the 
iTRAQ method. Anal Bioanal Chem. 411:403-411. 

17. Huang S, Liu D, Chen M, Xi G, Yang P, Jia C, et al. 2022. Effects 

of Bacillus subtilis subsp. on the microbial community and 
aroma components of flue-cured tobacco leaves based on 
metagenome analysis. Arch Microbiol. 204:726.  

18. Zhao YC, Kang ZL, Chen L, Guo YJ, Mu QS, Wang SY, et al. 2023. 
Quality classification of kiwifruit under different storage 
conditions based on deep learning and hyperspectral imaging 
technology. J Food Meas Charact. 17(1):289-305. 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 16:247-257 

 

257 

 

19. Tumpa T, Acuff S, Carr C, Baxter E, Osborne D. 2018. 
Classification of PET/CT injection quality using deep learning 
techniques and external radiation detectors. J Nucl Med. 
59(1):33. 

 


