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Extrachromosomal circular DNA (eccDNA) is a double-stranded circular DNA originating from chromosomes, 
constituting a vital element of the genetic system. Many researchers have found that eccDNA plays an important 
role in plant growth and development. Artificial intelligence methods are now widely used in the field of 

bioinformatics for various gene sequences. However, there is no deep learning model to predict plant eccDNA 
with high accuracy. This study developed DeepECD deep learning model in Python language and compared 
DeepECD with commonly used machine learning and deep learning models to evaluate its performance in 
predicting plant eccDNA. The results showed that the gene sequence length of 500 bp with the first 250 bp from 
the upstream boundary of the eccDNA gene coding region and the last 250 bp from the downstream boundary of 
the eccDNA gene coding region trained using One-hot encoding method had the highest accuracy in DeepECD. 
Models trained by different tissues from the same species were able to generalize. However, models trained by 
different species did not generalize. The results confirmed that plant eccDNA could be accurately predicted by 
DeepECD. The result of this study could speed up research related to plant eccDNA identification and fill the gap 
for the application of artificial intelligence methods within the field of plant eccDNA. The resulting model provided 
a new predictive tool for the study of plant eccDNA and expedited the research process related to plant eccDNA 
identification. 
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Introduction 
 

Extrachromosomal circular DNA (eccDNA) is a 
double-stranded circular DNA originating from 
chromosomes, constituting a vital element of the 
genetic system [1], and is widely found in 
different eukaryotes [2, 3]. However, due to its 
unique structure, its function remains a mystery. 
With the continuous development of high-
throughput technology, numerous research 
papers published since 2012 have confirmed that 
eccDNA exists in large quantities and has 

important biological functions. It not only serves 
specific roles in development, aging, and 
evolution, but also assumes a crucial regulatory 
role in disease expression [4]. The loss of eccDNA 
homeostasis facilitates tumor initiation, 
malignant progression, and heterogeneous 
evolution in many cancers [5, 6]. Hence, eccDNA 
is an important link in analyzing the gene 
regulatory network. It is expected to be a 
potential biomarker for medical diagnosis and 
may play an important role in disease treatment 
[4, 7-9]. In plants, high eccDNA load may alter 
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DNA repair pathways leading to genome 
instability [10], and it participates in the 
regulation of male plant sterility and directly 
affects the process of plant breeding [11]. 
eccDNA in eukaryotes includes DNA from 
organelles, such as chloroplasts and 
mitochondria, as well as small polydisperse 
circular DNAs, amplified genes, and so on. This 
type of DNA originates mainly from repetitive 
sequences in the genome, replicates 
independently of the chromosomes, and is 
widespread in the genomes of eukaryotes [3]. 
Researchers have now detected the presence of 
this DNA in yeast, pigeons, humans, rodents, 
Xenopus, and plants [2, 3, 12, 13]. eccDNA can be 
produced at any location in the genome and can 
consist of hundreds of base pairs (bp) or even a 
few megabases (Mb) [5]. Based on the available 
studies, eccDNA is likely a key link in biological 
evolution and plasticity. 
 
When dealing with large-scale genomic data, 
traditional methods of gene sequence analysis 
often face multiple challenges. With the 
development of information technology, deep 
learning has achieved predictive performance 
comparable to humans in several area tasks such 
as image processing and natural language 
processing [14, 15]. Given the limitations of 
traditional laboratory methods and the 
superiority of artificial intelligence methods, 
many researchers have developed artificial 
intelligence methods to analyze gene sequences. 
Some researchers have achieved excellent 
results regarding promoter prediction [16], 
circular RNA identification [17], and protein 
structure comparison [18] by using artificial 
intelligence. Abbasi et al. developed iLEC-DNA, a 
machine learning prediction model, to predict 
long eccDNA sequences [19]. Chang et al. 
developed DeepCircle, a deep learning model, to 
predict short eccDNA in humans [20]. However, 
there has not yet been a deep learning model 
developed to predict plant eccDNA. In addition, 
the existing models are only for long or short 
eccDNA. There is no deep learning model that 
predicts both long and short eccDNA with good 
performance. 

This study aimed to establish a high-performance 
model to predict plant eccDNA. The Python 
language was applied to develop a deep learning 
model named DeepECD. The model consisted of 
multiple convolutional and long short-term 
memory (LSTM) layers. The model was then 
optimized using pooling, dropout, and gradient 
descent. The resulting DeepECD model could 
expedite the process of research related to plant 
eccDNA identification and fill the gap in the 
application of artificial intelligence methods in 
the field of plant eccDNA. This study would also 
provide a new predictive tool for plant eccDNA 
research, as well as a basis and guidance for 
further exploration in related fields. 
 
 

Materials and methods 
 

Data mining and processing 
Selecting the appropriate dataset is crucial for 
constructing a high-performance deep learning 
predictive model for eccDNA. Inappropriate data 
may cause the model to predict incorrectly or 
lead to a bias toward positive or negative 
samples. It may also cause the model to fail to 
learn information useful for eccDNA classification 
and thus make incorrect decisions about eccDNA 
classification. The plant eccDNA data was 
downloaded from the PlantEccDNA database 
(http://123.56.104.85/PlantEccDNA/), which 
contained 2.48 GB of eccDNA-related 
information including 475,199 Arabidopsis 
eccDNA sequences [21] and 11,638 rice eccDNA 
sequences [22]. The downloaded information 
covered (1) the species including Arabidopsis and 
rice, (2) tissue including stems, flowers, roots, 
leaves for Arabidopsis and seeds, healing tissues, 
leaves for rice, (3) genome coordinates including 
the chromosome number, the start and stop 
positions of the eccDNA sequence, and positive 
and negative strands, and (4) reference genome 
version. The Bedtools 2.25.0 software 
(https://github.com/arq5x/bedtools2) was used 
to extract eccDNA sequences from Arabidopsis 
(Arabidopsis thaliana) (TAIR10) and rice (Oryza 
sativa Japonica) (IRGSP-1.0) [23]. To ensure the 
accuracy of the extracted eccDNA sequences, 
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Integrative Genomics Viewer (IGV) v2.11.9 
(https://igv.org/) was applied for manual 
inspection of the extracted eccDNA sequences 
[24]. To establish a high quality and reliable 
positive eccDNA dataset, 10,000 eccDNA 
sequences were randomly extracted from the 
tissue of each species. If the total number of 
sequences was less than 10,000, all eccDNA 
sequences were extracted. According to previous 
studies, CD-hit (http://weizhong-
lab.ucsd.edu/cd-hit/) was applied to extract 
eccDNA with the sequence similarity larger than 
80% from each tissue for the positive samples 
[25-27]. The highly similar eccDNA sequences 
were clustered together to produce high-quality 
positive samples that represented eccDNA 
features. This method prevented certain 
abnormal sequences from interfering with the 
model. There were two schemes for generating 
eccDNA-negative samples. The first one selected 
sequence from the genomic background [28, 29]. 
The eccDNA sequences were first removed from 
the genome, and then gene sequences were 
randomly extracted from the genomic sequences 
after removing the eccDNA sequences, and the 
selected gene sequences did not intersect with 
the eccDNA sequences. This scheme was also 
sometimes applied by clustering negative and 
positive samples and removing closely related 
negative and positive samples. However, this 
scheme had some drawbacks that (1) it might 
result in different distributions of negative and 
positive samples, (2) training the dataset after 
applying the clustering method to remove the 
closely related negative and positive samples 
might lead to overestimation of the model 
performance, (3) the model performed well on 
very different positive samples, but it might 
perform poorly on some similar samples, which 
could lead to insufficient model generalization. 
The second scheme was nucleotide 
reorganization using fasta_ushuffle 
(https://github.com/agordon/fasta_ushuffle) 
[29, 30], which eliminated the drawbacks of 
scheme one. This scheme could disrupt the 
biological sequence while preserving the k-let 
counts, and the method resulted in negative 
samples that were consistent with the 

distribution of positive samples. According to our 
encoding method, the k value was set to 1. The 
fasta_ushuffle was applied to reorganize the 
eccDNA of positive samples by accounting to 
obtain suitable eccDNA-negative samples. For 
each species, 5% of the positive samples and 5% 
of the negative samples were extracted to form 
the test set. In the remaining 90% of the dataset, 
10% of the sequences were randomly extracted 
for validation during model training. 
 
Model architecture 
The structure of the constructed DeepECD model 
was illustrated in Figure 1. DeepECD consisted of 
two feature extractors and a layer of the LSTM 
network. Feature extractor 1 consisted of 
Conv1D_1 (filters = 128, kernel_size = 4) and 
Conv1D_2 (filters = 64, kernel_size = 4). The final 
output processed by the maximum pooling and 
discard layers was used as the output of the first 
feature extractor. Feature extractor 2 consisted 
of Conv1D_3 (kernel_size = 4) and Conv1D_4 
(kernel_size = 16), where the filters were 
dynamically changed according to the shape of 
the Conv1D_2 output vector. The feature vector 
extracted from Conv1D_3 and Conv1D_4 was 
processed by global maximum pooling and then 
summed. The output of feature extractor 2 was 
shaped according to the shape of the output 
matrix of feature extractor 1. The processed 
vectors were spliced with the output vectors. The 
first feature extractor was used as input to the 
LSTM network. The result was obtained after two 
fully connected layers. The DeepECD model 
structure used L2 regularization for all 
convolutional layers and the value of 0.1 for all 
dropout layers. The activation function of the 
sense layer was sigmoidal. 
 
Loss function 
To optimize the model, the combination of binary 
cross-entropy loss (equation 1-1), and hinge loss 
(equation 1-2) were chosen as the loss functions 
for the DeepECD model. 
 

𝑙𝑜𝑠𝑠𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  −
1

𝑁
∑ [𝑦𝑖 𝑙𝑜𝑔(𝑦̂𝑖) +𝑁

𝑖=1

(1 − 𝑦𝑖 ) 𝑙𝑜𝑔(1 − 𝑦̂𝑖))] (1-1) 
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Figure 1. Structure of the DeepECD model. 

 
 

𝑙𝑜𝑠𝑠hinge =
1

𝑁
∑ 𝑚𝑎𝑥 (0,1 − 𝑦̂𝑖 𝑧𝑖)

𝑁
𝑖=1   (1-2) 

 
The DeepECD loss function formula was shown in 
equation 1-3 below. 
 
𝑙𝑜𝑠𝑠𝐷𝑒𝑒𝑝𝐸𝐶𝐷 = 0.95𝑙𝑜𝑠𝑠Binary Crossentropy +

0.05 𝑙𝑜𝑠𝑠Hinge (1-3) 

 
where N was the number of samples. 𝑦̂𝑖 was the 
probability that the sequence was predicted to 
be a positive sample. 𝑦𝑖  was the sequence truth 
category. z𝑖  was the true sample category. The 
equation differentiated from 𝑦𝑖  was 𝑦𝑖  = 0 when 
z𝑖 = -1, and 𝑦𝑖  = 1 when z𝑖 = 1. 
 
Evaluation criteria 
To evaluate the performance of deep learning 
models, the commonly used metrics including 
accuracy (equation 2-1), the F1 score (equation 
2-2), and the Matthews correlation coefficient 
(MCC) (equation 2-3) were employed to evaluate 
the model performance. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2-1) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (2-2) 

 

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (2-3) 

 
where TP was the number of positive samples 
correctly identified. FP was the number of 
negative samples misreported. TN was the 
number of negative samples correctly identified. 
FN was the number of positive samples 

misreported. Accuracy took a value in the range 
(0, 1), the F1 score took values in the range (0, 1), 
and the MCC took values in the range (-1, 1). For 
all the above metrics, the closer to 1, the better 
the model performance. When MCC was 1, the 
model fitted perfectly. However, when it was -1, 
the model did not fit at all. 
 
Cross-species experimental design 
To test if the model could generalize across 
different species and if enhancing the complexity 
of species in the training dataset would improve 
the model's performance, the following 
experiments were designed, which included (1) 
training DeepECD with Arabidopsis data and 
tested the model with rice data, (2) training 
DeepECD with rice data and tested the model 
with Arabidopsis data, (3) randomly extracted 5% 
of the positive rice sample and 5% of the negative 
rice sample for testing. A mixture of the 
remaining 90% of rice data and 10% of randomly 
extracted Arabidopsis data with balanced 
positive and negative samples was used for 
training, (4) randomly extracted 5% of the 
Arabidopsis positive sample and 5% of the 
Arabidopsis negative sample for testing. A 
mixture of the remaining 90% of Arabidopsis data 
and 10% of randomly extracted rice data with 
balanced positive and negative samples was used 
for training. 
 
Cross-tissue experimental design 
To determine if eccDNA from different tissues 
shared some common features and if it was 
possible   to   recognize   eccDNA   from   different 
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Table 1. Extrachromosomal circular DNA (eccDNA) data extraction. 
 

Species Tissue Number of original 
sequences 

Positive sample  
(CD hit) 

Negative sample 
(fasta_ushuffle) 

All data 

Arabidopsis 
thaliana 

Stem 10,000 4,748 4,748 9,496 

Leaf 10,000 4,943 4,943 9,886 

Flower 10,000 5,071 5,071 10,142 
Root 10,000 5,227 5,227 10,454 

Rice 

Callus 842 358 358 716 

Seed 2,499 2,236 2,236 4,472 
Leaf 8,297 6,560 6,560 13,120 

 
 
tissues of the same species and from different 
tissues of different species by using a model 
trained by eccDNA from one tissue, DeepECD was 
trained with eccDNA from different tissues and 
tested with eccDNA from other tissues. Among 
them, 10% of the eccDNA data used for training 
was taken to generate the test set. For example, 
90% of Arabidopsis flower eccDNA was used as 
the training set and 10% of Arabidopsis flower 
eccDNA and all other tissues were used as the 
test set, or 90% of Arabidopsis leaf tissue eccDNA 
was used as the training set and 10% of 
Arabidopsis leaf eccDNA and all other tissue 
eccDNA were used as the test set. 10% of the 
sequences from the training set were randomly 
removed and used as the validation set. The test 
sets with the best model performance were set 
as the validation set.  
 
 

Results and discussion 
 

A total of 58,286 sequences were extracted for 
model training. The sample details for each 
species and tissue were shown in Table 1. 
 
Model comparison 
The DeepECD model was compared with 10 other 
models including naive bayes [31], decision tree 
[32], random forest (n_estimators = 100) [33], k-
nearest neighbors (n_neighbors = 5) [34], logistic 
regression (max_iter = 1,000) [35], long short-
term memory (LSTM) [36], bidirectional long 
short-term memory (BiLSTM) [36], gated 
recurrent unit (GRU) [37], bidirectional gated 
recurrent unit (BiGRU) [37], and convolutional 

neural network (CNN) [38]. For eccDNA 
sequences > 500 bp, the 250bp upstream 
boundary and the 250bp downstream boundary 
from the eccDNA coding region were 
intercepted, respectively, and concatenated 
them to form DNA sequences with a length of 
500 bp. For eccDNA sequences < 500 bp, they 
were populated from 0 to 500 bp. All eccDNA 
sequences were encoded using One-hot 
encoding, and the model that showed the best 
validation set performance to test the test set 
during the training process was selected. All deep 
learning models used for comparison had 
identical hyperparameters as DeepECD except 
for the loss function. The binary cross-entropy 
loss was chosen for comparison of the deep 
learning models. The deep learning model that 
showed the best validation set performance for 
testing was chosen. The accuracy, the F1 score, 
and the MCC of the models for the test set were 
then determined (Table 2). The prediction 
performances of all the machine learning models 
based on eccDNA were very poor with an 
accuracy rate of about 50%. In contrast, the deep 
learning models showed very good performance 
regarding the recognition of eccDNA with the 
accuracy and the F1 score all over 0.85 and the 
MCC larger than 0.7. DeepECD performed better 
for rice and Arabidopsis eccDNA recognition than 
that of all the other tested deep learning models 
with both accuracy and the F1 score over 0.91 
and the MCC over 0.82 for rice and Arabidopsis 
eccDNA recognition. Because the machine 
learning models performed poorly, the receiver 
operating characteristic (ROC) curves for the 
deep learning  models  were  applied  to  calculate 
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Table 2. The results of model comparison between Arabidopsis thaliana and rice. 
 

Model Species Accuracy F1 score MCC 
Naive Bayes Rice 0.5098 0.5244 0.0200 

Arabidopsis 0.5627 0.6214 0.1094 

Decision tree Rice 0.5060 0.4992 0.0120 

Arabidopsis 0.5632 0.5982 0.1196 
Random forest Rice 0.5115 0.4877 0.0226 

Arabidopsis 0.5667 0.5959 0.1291 

K-Nearest Neighbor Rice 0.5098 0.4989 0.0195 
Arabidopsis 0.5427 0.7036 —— 

Logistic regression 
 

Rice 0.4907 0.4965 -0.0184 

Arabidopsis 0.5554 0.6009 0.1000 
LSTM Rice 0.8695 0.8677 0.7394 

Arabidopsis 0.8847 0.8947 0.7681 

BiLSTM Rice 0.8662 0.8647 0.7327 

Arabidopsis 0.8866 0.8983 0.7701 

GRU Rice 0.8564 0.8540 0.7133 

Arabidopsis 0.8930 0.9022 0.7847 

BiGRU Rice 0.8684 0.8627 0.7395 
Arabidopsis 0.8890 0.8985 0.7767 

CNN Rice 0.8684 0.8636 0.7388 
Arabidopsis 0.8872 0.8975 0.7725 

DeepECD Rice 0.9110 0.9119 0.8222 

Arabidopsis 0.9112 0.9203 0.8201 

 
 

 
 
Figure 2. Arabidopsis thaliana and rice receiver operating characteristic (ROC) curves and the area under the curve (AUC). 

 
 
the area under the curve (AUC) (Figure 2). The 
results showed that DeepECD had an AUC of 0.97 
for the recognition of rice and Arabidopsis 
eccDNA, which further verified the superior 
performance of DeepECD in recognizing eccDNA 
from these species. 
 

The changes in accuracy, loss, val accuracy, and 
val loss per epoch for all deep learning models 
during training with eccDNA from rice and 
Arabidopsis were then investigated (Figure 3). 
The accuracy of all deep learning models for the 
training set gradually approached 1 as the epoch 
increased.   Hence,   all   deep   learning   models 
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A. 

 
B. 

 
 
Figure 3. The training results. A. Arabidopsis training set accuracy and loss for each epoch. B. Rice training set accuracy and loss for each epoch. 

 
 
showed good performance for the recognition of 
eccDNA based on the training set. The accuracy 
of DeepECD based on the Arabidopsis training set 
was lower than that of other deep learning 
models, except for the CNN model that DeepECD 
had higher accuracy than CNN. Moreover, the 
loss of DeepECD was greater than that of other 
models except for the CNN model that DeepECD 
had lower loss than CNN. For the Arabidopsis 
validation set, DeepECD showed large 
fluctuations in accuracy and loss at the eighth 
epoch, which suggested that DeepECD had lower 
accuracy than that of the other deep learning 
models but higher accuracy than the BiLSTM 
model. Also, DeepECD had larger loss than that of 
the other models and lower loss than that of the 

BiLSTM model (Figure 4A). For the rice validation 
set, DeepECD showed larger fluctuations in 
accuracy and loss at the sixth and sixteenth 
epochs (Figure 4B). The results suggested that 
DeepECD did not perform as well as some of the 
deep learning models in the training set, but it 
outperformed all deep learning models in the 
validation set. Hence, DeepECD had better 
generalization performance. 
 
Analysis of encoding methods 
According to recent studies, the encoding 
method has an impact on the performance of a 
model [39]. In this study, 10 encoding methods 
were explored including One-bit encoding, Index 
encoding,    Complementary    encoding,    BaseN 
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A. 

 
B. 

 
 

Figure 4. The Validation results. A. Plot of the A. thaliana validation set accuracy and loss variation with each epoch. B. Plot of the rice validation 
set accuracy and loss variation with each epoch. 

 
 

 
 
Figure 5. Comparison of the accuracy of different encoding methods of rice and Arabidopsis extrachromosomal circular DNA (eccDNA). 
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Table 3. Species model generalization analysis. 
 

 Training set Test set Accuracy F1 score Matthew correlation coefficient 
Experiment 1 Arabidopsis Rice 0.8208 0.7953 0.6624 

Experiment 2 Rice Arabidopsis 0.7239 0.7017 0.4976 

Experiment 3 Rice (90%) + 
Arabidopsis (10%) 

Rice (10%) 0.9067 0.9042 0.8144 

Experiment 4 Rice (10%) + 
Arabidopsis (90%) 

Arabidopsis (10%) 0.9068 0.9176 0.8109 

 
 
encoding, Dummy encoding, Ternary encoding, 
Effect encoding, Binary encoding, One-hot 
encoding, and Hash encoding for DeepECD. The 
accuracies of trained DeepECD encoded with 
each method were shown in Figure 5. One-hot 
encoding demonstrated the best performance in 
recognizing eccDNA, followed by Hash encoding 
and Binary encoding. One-bit encoding showed 
the worst performance. 
 
Cross-species model performance 
The results of cross-species model performance 
were shown in Table 3. The eccDNA of different 
species demonstrated some common properties 
(Experiments 1 and 2) with the model trained by 
eccDNA from one species could be generalized. 
The effect of generalization of DeepECD trained 
by eccDNA of different species was not the same, 
where DeepECD trained by Arabidopsis eccDNA 
performed better for rice eccDNA than DeepECD 
trained by rice eccDNA performed for 
Arabidopsis eccDNA. The results of experiments 
3 and 4 revealed that the accuracy of mixing 
Arabidopsis and rice data as a training set was 
0.8903 to predict rice and 0.9061 to predict 
Arabidopsis. The F1 score and MCC were lower 
than those of the model trained with a single 
species. Thus, mixing eccDNA from multiple 
species did not improve the model’s 
performance in predicting eccDNA from one of 
the species. 
 
Cross-tissue model performance 
When using different tissues from the same 
species as the training and test sets, the 
predictive performance of the model was good 
(Figure 6). The accuracy of the model to predict 
eccDNA in different tissues from the same 

species fluctuated around 0.9 for the training and 
test sets. The accuracy of the model to predict 
eccDNA in different tissues from a different 
species fluctuated around 0.8 for the training and 
test sets. However, the models trained by rice 
callus as the training set did not perform well, 
probably because the rice callus dataset was too 
small for the models to learn the features of 
eccDNA. Interestingly, the model trained by 
Arabidopsis stem tissue performed better on the 
other tested tissues than the model trained on 
itself as the training set. The models trained by 
Arabidopsis leaf and root tissue as the training 
sets performed better in predicting Arabidopsis 
flower eccDNA than the model trained by 
Arabidopsis flower tissue as the training set. The 
model trained by rice leaf tissue performed 
better than the model trained by rice seed in 
predicting rice seed eccDNA. 
 
Data selection  
This study also investigated whether datasets 
with different intercept lengths affected the 
model’s performance. eccDNA sequences with 
lengths of 100, 150, 200, 250, 300, 350, 400, 450, 
and 500 bp at both ends were extracted. For 
eccDNA with a length greater than 200 bp, 100 
bp was intercepted away from the boundary at 
the front and back ends of the eccDNA sequence 
and spliced them into a 200 bp sequence. For 
eccDNAs less than 200 bp in length, the zeros 
were filled up to 200 bp. For each dataset, 90% of 
eccDNA sequences were used as the training set 
and 10% as the test set. From the training set, 
10% of the sequences were randomly removed 
for the validation set. The ratio of positive and 
negative samples in the training and test sets was 
1:1. The model that performed the best was used 
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Figure 6. The accuracy of each tissue extrachromosomal circular DNA (eccDNA) model in predicting eccDNA from each tissue.  

 
 

 
 
Figure 7. The impact of datasets with different intercept lengths on the model’s performance.  
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for the validation set testing. The results showed 
that the accuracy, the F1 score, and the MCC 
gradually increased in rice from the 100 to 250 bp 
intercept length datasets, while the accuracy, the 
F1 score, and the MCC gradually smoothed from 
the 250 to 500 bp intercept length datasets. On 
the other hand, the accuracy, the F1 score, and 
the MCC also gradually increased for the 100 to 
250 bp intercept length datasets in Arabidopsis. 
However, unlike the rice model, the performance 
of the Arabidopsis model suddenly decreased at 
the 350 bp intercept length, and then rose again 
from the 350 to 450 bp intercept length datasets 
(Figure 7). 
 
 

Conclusion 
 

This study confirmed that deep learning could 
predict plant eccDNA. The proposed DeepECD, a 
plant eccDNA prediction model, consisted of self-
constructed feature extractor, loss function, and 
LSTM network, which showed excellent 
performance in recognizing rice and Arabidopsis 
eccDNA with accuracy exceeding 0.91. The 
results showed that DeepECD outperformed not 
only commonly used deep learning models as 
well as machine learning models, but also 
DeepCircle (accuracy = 83.31 ± 4.18%) and iLEC-
DNA (accuracy = 67 - 73%). The impacts of 
different factors including different encoding 
methods and intercept lengths on the model’s 
performance were also explored in this study. 
The results showed that the model worked best 
when using One-hot encoding and truncating the 
length of the upstream and downstream 
boundaries within the eccDNA coding region to ≥ 
250 bp. The model was trained and tested with 
different species and tissues to explore its 
generalizability. The model demonstrated poor 
generalizability between different species and 
high generalizability between different tissues of 
the same species. The results indicated that the 
model trained with Arabidopsis stem tissue was 
able to predict eccDNA from other Arabidopsis 
tissues and performed better than the model 
trained with other Arabidopsis tissues, which 
suggested that Arabidopsis stem eccDNA 

contained features of eccDNA from other tissues. 
Therefore, the eccDNA of other Arabidopsis 
tissues may not need to be detected 
experimentally and can be predicted directly by 
the model trained with the Arabidopsis stem 
tissue in future research. 
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