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Traditional surface damage detection algorithms for agricultural products cannot be applied to large-scale 
instances due to the difficulty of their implementation. Thus, research on automatic identification and 
classification algorithms for agricultural products surface damage based on deep learning has emerged. This study 
proposed a deep learning-based algorithm for automatic identification and classification of surface damage of 
agricultural products and compared it with six mainstream classification models in plantvillage in terms of 
generalization ability, training time, and amount of pre-training data. The results proved that the model proposed 
in this study was the best in all aspects and had the highest accuracy when the pre-training data reached 40,000. 

This study verified the superiority and generalization ability of the proposed model and provided a new solution 
and reference standard in the field of agricultural product surface damage detection. Further, the results provided 
valuable reference and inspiration for related research and practice. 
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Introduction 
 

The maintenance of the quality of agricultural 
products is crucial, especially in the accurate 
identification and classification of their surface 
damage, which is significant for ensuring food 
safety and reducing economic losses. Currently, 
although the surface damage detection of 
agricultural products is widely used by manual 
detection means, this method cannot meet the 
requirements of large-scale, rapid, and accurate 
detection in the modern agricultural supply 
chain due to its strong subjectivity, low 
efficiency, limited accuracy, and high cost [1]. 
 
The application of deep learning techniques in 
the field of agricultural product surface damage 

recognition has become an emerging trend. 
Deep learning architectures such as 
convolutional neural networks (CNNs) [2], long 
and short-term memory networks (LSTMs) [3], 
and multilayer perceptual machines (MLPs) [4] 
have been successfully applied to image feature 
extraction and complex classification tasks, 
which significantly improve the recognition 
accuracy and system robustness. Among them, 
CNNs have been widely used in image feature 
extraction [5], while LSTMs and MLPs have 
demonstrated strong performance in complex 
sequence data and classification tasks [6, 7]. 
However, existing techniques still face some 
challenges, such as the difficulty in effectively 
extracting and distinguishing injury site features, 
and the limited ability to adapt to different kinds 
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of agricultural products and changes in injury 
types [8-10]. 
 
The core objective of this study was to develop 
an efficient, accurate, and generalized automatic 
identification and classification system based on 
computer vision and deep learning techniques to 
address the many challenges of agricultural 
product surface damage recognition. The system 
aimed to overcome the inherent defects of 
traditional manual detection methods and 
realize the refined identification and 
classification of surface damage of agricultural 
products in different kinds, states, and 
viewpoints by deeply integrating deep learning 
techniques such as CNN, attention mechanism, 
LSTM, and MLP to substantially improve the 
efficiency and accuracy of agricultural product 
quality monitoring, reduce economic losses due 
to surface damage, protect food safety, and 
positively promote the development of 
intelligent detection technology in the 
agricultural industry. By constructing and 
validating a large image database containing 
multiple agricultural product samples and 
damage types, this study would verify the 
effectiveness and superiority of the proposed 
algorithm in real-world complex scenarios. This 
study designed a feature extraction method 
based on CNN and attention mechanism to learn 
and highlight damage features from a huge 
agricultural product image dataset in an 
automated way, weakening the background 
noise and non-relevant feature interference. 
Then, a multi-label classification framework was 
developed, which combined LSTM and MLP in 
order to realize the simultaneous and accurate 
determination of damage category, degree, and 
location by integrating the information of 
produce type, state, and angle. The proposed 
algorithm was verified by using a diverse and 
large-scale image database including a wide 
range of common produce types (e.g., apples, 
tomatoes, corn, potatoes, etc.) and damage 
types (cracks, spots, pests, and diseases, etc.) for 
its effectiveness and advancement. Through 
rigorous testing of this database, it was expected 
that the research results would not only optimize 

the quality control process of agricultural 
products and improve the efficiency of storage 
and transportation, but also positively affect the 
testing technology of the agroindustry and push 
the industry towards a smarter and more 
efficient monitoring and analysis system. 

 
 

Materials and methods 
 
Principles of the algorithm 
The specific structure of the modules was shown 
in Figure 1. The data preprocessing module was 
to crop, scale, normalize, and other operations 
on the images of agricultural products to adapt 
to the input requirements of the neural network, 
as well as to increase the diversity and 
robustness of the data. The cropping step 
included to find a smallest rectangular region R 
based on the edge information of each produce 
image I. So that, R contained the main part of the 
produce, and then crop I to R to get the cropped 
image Ic [11]. The scaling step was that, for each 
cropped image Ic, according to the input size of 
the neural network, Ic was scaled equally to the 
size of W × H to get the scaled image Is, where W 
and H were the pre-set width and height [12]. 
The normalization step was that, for each scaled 
image Is, according to the distribution of its pixel 
values, each pixel value x of Is was converted to z 
to get the normalized image In, where the 
formula for z calculation was shown in Equation 
(1) [13]. 
 

x
z



−
=

μ
                                                              (1) 

 
where μ and   were the mean and standard 
deviation of the pixel values of Is, respectively. 
The last step for data enhancement included 
randomly applying some image 
transformations such as mirroring, rotating, 
translating, distorting, filtering, contrast 
adjustment, etc. to each normalized image In to 
a certain probability to obtain the enhanced 

image nI , in order to increase the diversity and 

robustness of the data [14].  
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Figure 1. Module flowchart. 

 
 

The feature extraction module was to use CNN 
and attention mechanism to extract features 
from the produce image, get the feature vector 
of the damage region, highlight the features of 
the damage region, suppress the features of the 
background and interference, and improve the 
differentiation and robustness of the features. 
For each enhanced image Ia, the feature 
extraction was performed on Ia using the pre-
trained CNN model F to obtain the feature map 
X, where X had the shape of C × M × N, where C 
was the number of channels of the feature map, 
and M and N were the height and width of the 
feature map. The formula for X calculation was 
shown in Equation (2) [15]. 
 

( )aX F I=                                                             (2) 

 
For each feature map X, the attention 
mechanism model G was used to weight X to get 
the attention feature map Xa, where the shape 
of Xa was the same as that of X and was 
calculated using Equation (3) [16]. 
 

( )XaX G X=                                                        (3) 

 
where G(X) was the attention weight matrix, 
which also had the shape of C × M × N, and the 
formula for G(X) calculation was shown in 
Equation (4) [17]. 
 

2 1( ) ( ( ))G X W W X =                                        (4) 

 
where 𝜎 was the Sigmoid activation function,   

was the relu activation function. 1W  and 2W  

were the learnable parameters of the attention 
mechanism model, which were shaped as rc × C 
and C × rc , respectively, with r  as the scaling 

factor, which was generally taken as 16 or 32 
[18]. The feature vector was that, for each 
attention feature map Xa, flatten Xa into a one-
dimensional vector x to obtain the feature vector 
x, where x was of length C × M × N. The formula 
for x calculation was shown in Equation (5) [19]. 
 

( )ax flatten X=                                                  (5) 

 
The classification prediction module was to use 
LSTM and MLP to classify and predict the feature 
vectors and get the multi-label output of the 
damage including the type, degree, and location 
of the damage, which integrated the type, state, 
and angle information of the agricultural 
products, and improved the accuracy and 
efficiency of the classification. For each feature 
vector x, the LSTM model H was utilized to 
process x to obtain the sequence output z, where 
z had the shape of L × D, where L was the length 
of the sequence and D was the dimension of the 
sequence. The formula of z  was then shown in 
Equation (6) [20]. 
 

( )z H x=                                                                (6) 

 
where H was the hidden state of LSTM and its 
update formula was shown in Equation (7). 
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cell state, and hidden state at moment t.   was 
the Sigmoid activation function. tanh  was the 

Hyperbolic Tangent Activation Function. 

, , , , , , ,i f o g i f o gW W W b b b bW  were the learnable 

parameters of LSTM. For each sequence output 
z, the MLP model J was utilized for classification 
prediction of z to get the multi-label output of 
damage y, where y had the shape of K, and K was 
the number of categories of damage. The 
formula of y calculation was shown in Equation 
(8) [21]. 
 

( )y J z=                                                                  (8) 

 
where J was the output layer of the MLP, which 
was calculated as shown in Equation (9). 
 

z = j jJ z b +（ ）（W ）                                                (9) 

 
where   was the Sigmoid activation function, 

and JW  and jb  were the learnable parameters 

of the MLP with shapes K × D and K, respectively 
[22]. 
 
The result output module was to annotate and 
display the images of agricultural products 
according to the results of classification 
prediction, output the quality assessment of 
agricultural products and processing 
suggestions, and provide effective technical 
support and solutions for agricultural production 
and distribution [23]. The labeling process was to 
get the labeled image Ib for each enhanced image 
Ia and the corresponding damage of the multi-
label output y according to the value of y, 
labeling Ia, such as marking the damage area with 
a red box, marking the type, degree, and location 
of the damage with text, etc. [24]. For each 
labeled image Ib, it would be displayed for the 
user to view. For each damage the multi-label 
output y, according to the value of y, the quality 
of the produce was evaluated such as giving the 
grade, quality, and value of the produce, etc. The 
evaluation result was obtained as 

er
, which was 

calculated using Equation (10) [25]. 

( )er f y=                                                              (10) 

 
where f was an evaluation function that gave 
different evaluation scores and grades, such as 
A, B, C, etc., according to different types, 
degrees, and locations of damage. For each 
damage, the multi-label output y provided 
suggestions for the handling of the produce 
based on the value of y, such as giving 
precautions and methods for storage, 
transportation, processing, and consumption of 

the produce. The obtained suggestion result sr  

was calculated using Equation (11) [26]. 
 

( )r g y=                                                               (11) 

 
where g  was a suggestion function that gave 
different suggestions on what and how to do, 
such as refrigerate, excise, cook, etc., depending 
on the type, extent, and location of the damage 
[27]. The final output would splice the evaluation 

result er  and the recommendation result sr  

into a string r  and output r  to the user for 
reference. 
 
Algorithmic process 
The algorithmic process flowchart was shown in 
Figure 2. Using CNN and attention mechanism to 
construct a feature extraction network consisted 
of multiple convolutional layers, pooling layer, 
activation layer, and attention layer, which could 
automatically learn the feature representation 
of the damage on the surface of the agricultural 
products, highlight the features of the damaged 
area, suppress the features of the background 
and interference, and improve the 
differentiation and robustness of the features. 
The training set images were input into the 
feature extraction network, and the parameters 
of the network were optimized by the back 
propagation algorithm to obtain the feature 
vector of the training set images (Figure 3) [28]. 
LSTM and MLP were used to construct a classifier 
network, which consisted of one LSTM layer and 
one MLP layer, and could comprehensively 
consider the type,  state,  and angle information 
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Figure 2. Algorithm flowchart. 

 
 

 
 
Figure 3. Data processing model. 

 
 
of agricultural products to classify the surface 
damage of agricultural products with multiple 
labels, and realize the simultaneous judgment of 
the type, degree, and position of damage to 
improve the accuracy and efficiency of 
classification. The feature vectors and 
corresponding labels of the images in the 
training set were input into the classifier 

network, and the parameters of the network 
were optimized by the back-propagation 
algorithm to obtain the model of the classifier 
network. The role of the LSTM layer was to take 
advantage of the characteristics of LSTM 
network, and take into account the type, state, 
and angle information of the agricultural 
products comprehensively, and to convert the 
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feature vectors of the output of the feature 
extraction network into a fixed-length vector, 
which was used as the input to the MLP layer. 
The LSTM layer was used as the input to the MLP 
layer. The parameters of the LSTM layer included 
the input dimension, output dimension, weights 
and biases of the gating units, etc. The role of the 
MLP layer was to utilize the characteristics of the 
MLP to perform a nonlinear transformation on 
the vector output from the LSTM layer, and to 
output a multidimensional vector with each 
dimension corresponding to the label of a 
damage, which indicated the presence or 
absence of the damage, the degree, and the 
location of the damage, etc. The parameters of 
the MLP layer included the number of hidden 
layers, the degree of the damage, and the 
location of the damage. Parameters included the 
number of hidden layers, the number of 
neurons, the activation function, the weights, 
and the bias [29-32]. 
 
Data sets  

PlantVillage (https://github.com/PlantVillage)  
data used in this study was a publicly available 
database of plant leaf images containing 30 
agricultural products and 30 injuries. The 
proportion of images in each category in the 
training set and test set was the same with 80% 
of the total number of images in a certain 
category being used as the training set and 20% 
of the total number of images in the same 
category being used as the test set. Various 
produces including pomegranates, tomatoes, 
corn, grapes, strawberries, etc. and different 
diseases were included in the data sets [33]. 

 
Assessment of the proposed model 
To make a comprehensive assessment of the 
effectiveness of the model, the following 
mainstream algorithms for automatic 
identification and classification of surface 
damage on agricultural products were selected 
as comparison methods, which included six deep 
learning-based algorithms (SVM, CNN, DBN, CAE, 
Resnet, ACNN) for automatic identification and 
classification of surface damage in agricultural 

products. All those methods have evolved 
gradually from 2006 to 2022 through traditional 
feature extraction and classification methods to 
the use of techniques, which include 
convolutional neural networks, deep belief 
networks, convolutional selfencoders, deep 
residual networks, and attentional mechanisms 
to improve the performance and efficiency of 
identification and classification [34]. 
 
 

Results and discussion 
 

Assessment of proposed model 
The amount of pre-training data, the running 
time of the model, and the generalization ability 
of the model were selected in this study as the 
assessment experimental indicators. Four 
metrics including accuracy, recall, precision, and 
F1-score were used to determine the 
generalization ability of the models [35]. The 
results showed that the proposed model (LSTM 
+ MLP + CNN) was the best in all the evaluation 
metrics, indicating that it had strong time series 
prediction ability, which might be due to the fact 
that it combined the long-term memory 
capability of LSTM, the nonlinear mapping 
capability of MLP, and the local feature 
extraction capability of CNN, which enabled it to 
better capture the dynamics and complex 
patterns of time series. In contrast, the other 
models demonstrated weak points in certain 
metrics such as lower recall for SVM, longer 
running time for CNN, higher amount of pre-
training data for DBN, lower precision for CAE, 
lower F1 value for Resnet, and longer running 
time for ACNN (Table 1) [36]. 
 
Relationship between pre-training data size and 
the model accuracy 
To explore the relationship between the amount 
of pre-training data and the model accuracy for 
the LSTM + MLP + CNN model of this study, a quiz 
in the same experimental setting was conducted. 
The results showed that the model reached the 
highest accuracy rate when the pre-training data 
reached 40,000 (Figure 4). 
 

https://github.com/PlantVillage


Journal of Biotech Research [ISSN: 1944-3285] 2024; 17:138-145 

 

144 

 

Table 1. Comparison of proposed LSTM + MLP + CNN model with other six deep learning-based algorithms. 
 

Model 
Number of 

pre-training data 
Running 

time 
Accuracy 

Recall 
rate 

Precision 
F1 

value 

SVM 1,000 10 s 0.75 0.72 0.77 0.74 

CNN 20,000 20 s 0.82 0.79 0.84 0.81 

DBN 30,000 30 s 0.86 0.83 0.88 0.85 
CAE 40,000 40 s 0.89 0.87 0.91 0.89 

Resnet 60,000 50 s 0.92 0.90 0.93 0.91 

ACNN 60,000 60 s 0.95 0.94 0.96 0.95 
LSTM + MLP + CNN 40,000 70 s 0.99 0.99 0.99 0.99 

 
 

 
 
Figure 4. Relationship between model accuracy and model pre-
training data. 

 
 
This study proposed a deep learning-based 
algorithm for automatic identification and 
classification of damage on the surface of 
agricultural products, which utilized the 
advantages of CNN, attention mechanism, LSTM, 
and MLP, and was able to effectively extract the 
features of the surface of agricultural products 
and determined whether there was damage, as 
well as the type and degree of damage. The 
model combined a variety of deep learning 
techniques, fully utilized their advantages, and 
improved the performance and efficiency of the 
model. The evaluation indexes for this proposed 
model were selected comprehensively, and the 
evaluation results were objectively analyzed, 
demonstrating the superiority and stability of 
the model. However, although the proposed 
model in this study achieved the highest 
accuracy rate when the pre-training data 

reached 40,000, it did not indicate whether the 
selection of this data amount was general and 
representative. In addition, the performance and 
changes of the proposed model were not 
explored under different data amounts, 
therefore, data sensitivity and robustness of the 
model should be examined in future study. 
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