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Glioma, the most prevalent type of brain tumor, is categorized into low-grade gliomas (LGGs) and high-grade 
gliomas (HGGs). Accurate differentiation between these categories is crucial for selecting the appropriate 
therapeutic approach. Magnetic resonance imaging (MRI) technology offers a noninvasive and rapid diagnostic 
method for visual interpretation by clinicians. Machine learning plays a pivotal role in intelligently analyzing 
multiple MRI images, enhancing diagnostic efficiency, and providing an objective diagnosis. Radiomics and deep 

learning (DL) techniques contribute distinctively to glioma grading by extracting pertinent features from various 
MRI images. This study aimed to assess the efficacy of fusing radiomic and DL features from multiple MRI images 
to distinguish between LGGs and HGGs. Image data from four MRI scanning sequences including T1-weighted, 

postcontrast T1-weighted, T2-weighted, and T2 fluid-attenuated inversion recovery images were collected from 
various institutions with different instrumental magnetic field strengths. The radiomic features from each MRI 
sequence were used to construct respective single-sequence radiomic models, while the slice images from each 
MRI sequence were used to construct corresponding single-sequence DL models. A radiomic fusion model was 
created by amalgamating signatures from the four single-sequence radiomic models, and a DL fusion model was 
constructed by integrating information from all four MRI sequences. The radiomic and DL (RDL) model was 
constructed using two fusion signatures generated by the radiomic and DL fusion models, respectively. The RDL 

model demonstrated excellent diagnostic performance, achieving an area under the curve (AUC) of 0.959 on a 
testing cohort with the radiomic fusion signature proving pivotal in differentiating LGGs from HGGs. The RDL 
model exhibited superior generalization performance compared to the radiomic or DL models constructed solely 
based on MRI sequences. The results confirmed the feasibility and effectiveness of combining radiomic and DL 
features through fusion signatures, thereby highlighting the potential of integrating radiomic and DL fusion 
signatures to enhance preoperative glioma grading performance. 
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Introduction 
 

Gliomas are a prevalent form of brain cancer [1, 
2], accounting for approximately 80% of all 
malignant brain tumors [3, 4], and can be 

categorized as low-grade gliomas (LGGs) and 
high-grade gliomas (HGGs) [5-8]. In clinical 
practice, different treatment approaches are 
used for LGGs and HGGs. HGGs require surgery 
combined with radiotherapy or chemotherapy, 
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whereas LGGs necessitate post-surgery 
monitoring without immediate intervention [9]. 
Thus, accurate differentiation between LGGs and 
HGGs is vital for selecting a precise therapeutic 
approach. Pathological examination serves as 
the gold standard for diagnosis [10]. However, it 
is an invasive procedure that requires a biopsy 
sample and carries associated risks. By contrast, 
magnetic resonance imaging (MRI) offers a 
noninvasive and rapid diagnostic method that 
plays a crucial role in the diagnosis of gliomas [7, 
11, 12]. MRI examination includes multiple 
scanning sequences, among which T1-weighted 
(T1), postcontrast T1-weighted (T1C), T2-
weighted (T2), and T2 fluid-attenuated inversion 
recovery (FLAIR) images have been widely used 
in brain tumor classification [13]. Different MRI 
sequences can offer various valuable insights for 
clinicians, each playing significant roles in glioma 
grading. However, in clinical practice, glioma 
grading based on MRI relies on visual 
interpretation by clinicians. Visual 
interpretation, a traditional diagnostic method, 
is subjective and labor intensive [14]. 
Fortunately, machine learning (ML) has been 
increasingly employed in the intelligent analysis 
of medical images to improve diagnosis [15]. 
 
Radiomics and deep learning (DL) are two major 
branches of ML [16]. In contrast to visual 
interpretation, radiomics methods possess the 
capability to extract multiple disease-related 
features from a defined region of interest (ROI) 
[17, 18]. Previous studies have employed 
radiomic features based on multiple MRI 
sequences for glioma grading [19-21]. A recent 
study underscored that DL models 
outperformed radiomic models [22]. DL, a 
relatively recent ML methodology, can 
automatically extract intricate and abstract 
features from entire medical images. Currently, 
DL models based on multiple MRI sequences 
have been employed for glioma grading [23, 24]. 
Radiomics and DL, utilizing distinct feature 
extraction techniques, offer diverse sets of 
information that can be valuable in glioma 
grading. Consequently, integrating DL and 
radiomics based on multiple MRI sequences 

holds the potential to enhance the accuracy of 
distinguishing between LGGs and HGGs. 
Previous studies have demonstrated that 
combining radiomics and DL features is a 
promising approach in cancer studies [25-27]. 
Zhang et al. employed the combination of 
radiomics and DL features to classify benign and 
malignant breast lesions [28]. Tian et al. 
employed the combination of radiomics and DL 
features to predict the PD-L1 expression level in 
preoperative MRI of hepatocellular carcinoma 
(HCC) patients [29]. These studies demonstrated 
that the model constructed using a combination 
of radiomics and DL features outperformed 
models constructed using either radiomics or DL 
features. However, few studies have employed 
the combination of radiomics and DL features 
extracted from multiple MRI sequences in 
glioma grading, particularly in discriminating 
between LGGs and HGGs. To explore the 
feasibility of combining radiomics and DL 
features from multiple MRI sequences in glioma 
grading, a pioneering study combined radiomic 
features and DL features extracted from multiple 
MRI sequences to construct a classifier for 
predicting glioma grade [30]. Compared with 
models constructed solely using radiomics or 
deep features, the model constructed using the 
combination of radiomic and DL features 
demonstrated superior performance. However, 
that study did not employ the T1WI and T2WI 
sequences, which were also important in glioma 
grading. Additionally, the merging of radiomics 
and DL features may lead to an excessive 
number of features, potentially impacting the 
performance of the constructed model. Thus, 
further validation is needed to assess the 
performance of the combination of DL and 
radiomics features based on multiple MRI 
sequences. 
 
This study evaluated the effectiveness of a 
combination of radiomics and DL utilizing fusion 
signatures extracted from multiple MRI 
sequences in distinguishing LGGs and HGGs. Five 
radiomic and DL models were constructed, and a 
radiomic and DL (RDL) model was developed for 
discriminating between LGGs and HGGs, 
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leveraging radiomic and DL fusion signatures 
derived from multimodal MR images. In 
addition, a multimodal attention module, named 
the channel-spital-global (CSG) attention 
module, was developed through this study. 

 
 

Materials and methods 
 
Data resource 
The patients’ image data and corresponding 
diagnoses were obtained from the Cancer 
Imaging Archive (TCIA) with the permission of 
TCIA (https://www.cancerimagingarchive.net)  
[31]. All data were from BraTS-TCGA-LGG and 
BraTS-TCGA-GBM projects [32, 33], including 
243 patients with 76 and 167 patients in the 
testing and training datasets, respectively. The 
training dataset was further divided into training 
(n = 133) and validation (n = 34) cohorts. The 
patients’ clinical data from BraTS-TCGA-LGG 
project can be accessed online at 
https://wiki.cancerimagingarchive.net/pages/vi
ewpage.action?pageId=5309188#5309188c260
29d5d06d47298421bc97a34ba253, and from 
BraTS-TCGA-GBM project at the website of  
https://wiki.cancerimagingarchive.net/pages/vi
ewpage.action?pageId=1966258#19662585384
a856aefe4daf9184d99f46990e0b. The 
demographic characteristics of the training and 
testing datasets were shown in Table 1. 
 

Image description and preprocessing 

For each patient, T1, T1C, T2, and FLAIR images 
were obtained. Sequences were scanned before 
surgery. MRI images utilized in this study were 
collected from multiple institutions with varying 
magnetic field strengths. The image data were 
obtained online from the websites of 
https://wiki.cancerimagingarchive.net/pages/vi
ewpage.action?pageId=24282668 for BraTS-
TCGA-LGG project and 
https://wiki.cancerimagingarchive.net/pages/vi
ewpage.action?pageId=24282666 for BraTS-
TCGA-GBM project. According to the description 
on the TCIA website, these images underwent 
skull stripping, interpolation at the same 

resolution, and co-registration to the same 
anatomical template. The preprocessed images 
were then segmented. The segmentation data 
was obtained from TCIA with three 
segmentation labels as necrotic region, 
peritumoral region, and enhancing tumor. All 
MRI images were normalized using the following 
equation. 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥𝑟𝑎𝑤−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
,  

  
where 𝑥𝑟𝑎𝑤  and 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  represented the 
original and normalized intensity of each voxel, 
respectively. 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 were the minimum 
and maximum intensities, respectively, of all 
voxels in the corresponding MRI image. 
 
Radiomics-based predictive model construction 
1. Radiomic feature extraction 

In this study, three regions including necrosis, 
the peritumoral region, and the enhancing 
tumor region were collectively considered as a 
whole and utilized as ROIs [34, 35]. The open-
source PyRadiomics package  
(https://pyradiomics.readthedocs.io) was used 
to extract radiomic features from the ROIs [36]. 
Prior to feature extraction, the MRI images were 
preprocessed using eight filters including square 
root, gradient, Laplacian of Gaussian with four 
sigma levels (2.0, 3.0, 4.0, and 5.0), 3D local 
binary pattern, wavelet, logarithm, exponential, 
and square (Figure 1A). The preprocessed and 
original images were used to extract textural, 
shape, and first-order features, resulting in 1,967 
features from each MRI sequence. Detailed 
information on these radiomic features can be 
found in the PyRadiomics documentation 
(https://pyradiomics.readthedocs.io/en/latest/f
eatures.html). 

 

2. Single-sequence radiomics model 
construction 

The process of constructing single-sequence 
radiomic models by utilizing corresponding MRI 

 

https://www.cancerimagingarchive.net/
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=5309188#5309188c26029d5d06d47298421bc97a34ba253
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=5309188#5309188c26029d5d06d47298421bc97a34ba253
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=5309188#5309188c26029d5d06d47298421bc97a34ba253
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966258#19662585384a856aefe4daf9184d99f46990e0b
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966258#19662585384a856aefe4daf9184d99f46990e0b
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966258#19662585384a856aefe4daf9184d99f46990e0b
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282668
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282668
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282666
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282666
https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Table 1. Patient demographics in the training and testing sets.  
 

 Training dataset Testing cohort* 
(n = 76)  Overall 

(n = 167) 
Training cohort* 

(n = 133) 
Validation cohort 

(n = 34) 

Age (year, mean ± SD) 52.36±15.46 53.19±15.11 49.15±16.62 53.65±14.87 
Age range 18~84 20~84 18~74 17~80 
Gender     

Male 90 68 22 43 

Female 76 64 12 32 
Race     

White 147 118 29 64 
Asian 6 3 3 1 
African American 9 9 0 7 
Not available 5 3 2 4 

Grade     
LGG 65 49 16 43 
HGG 102 84 18 33 

Note: * The age and gender of one patient were unknown. 

 
 

 
 
Figure 1. Single-sequence radiomic model construction. Radiomic features were extracted and employed to construct a single-sequence radiomic 

model using GridSearchCV with ten folds. A. Framework of single-sequence radiomic model construction. B. Training, validation, and testing of 
the single-sequence radiomic models. LASSO: least absolute shrinkage and selection operator. LoG: Laplacian of Gaussian. LBP3D: 3D local binary 

pattern. 
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radiomic features was shown in Figure 1B. In this 
process, a classifier in the form of a logistic 
regression (LR) model with elastic-net 
regularization was employed to generate a 
single-sequence radiomic signature. To enhance 
the model’s generalizability, Student’s t-test was 
applied for feature analysis [37]. Subsequently, 
the feature values in the training cohort were 
normalized to a range of 0 to 1 based on the 
minimum and maximum values of features in the 
training cohort. The same normalization was 
applied to the corresponding features in the 
validation and testing cohorts. The least absolute 
shrinkage and selection operator (LASSO) was 
employed to further reduce the dimensionality 
of the radiomic features [37]. The imbalance in 
the number of patients with LGGs and HGGs 
necessitated the use of class weights to mitigate 
this limitation in LR construction. The 
parameters of each LR were optimized during 
the training process using the GridSearchCV tool 
in Scikit-learn (https://scikit-
learn.org/stable/modules/generated/sklearn.m
odel_selection.GridSearchCV.html#sklearn.mod
el_selection.GridSearchCV). For LR with elastic-
net regularization, the λ and l_1 ratios were 
selected from 21 values [2-10, 2-9, …, 29, 210] and 
10 values [0.1, 0.2, …, 0.9, 1], respectively. 
Finally, LR models with their corresponding 
optimal hyperparameters were constructed 
using the training cohort. The constructed 
models were validated using radiomic features 
of the corresponding MRI sequence in the 
validation cohort and tested using radiomic 
features of the corresponding MRI sequence in 
the testing cohort. The prediction probability 
was defined as a single-sequence radiomic 
signature. 
 
3. Radiomic fusion model construction 
Figure 2 provided an overview of the workflow 
for constructing the radiomic fusion model with 
LR with L2 regularization used to generate a 
radiomic fusion signature. The process involved 
combining the signatures of the four single-
sequence models from the training cohort and 
using them as input to train an LR model with L2 
regularization. This step resulted in the creation 

of the radiomic fusion model. Before 
constructing the LR models, the signatures were 
normalized using a z-score transformation. 
During the training process, the LR parameters 
were optimized using GridSearchCV. To address 
the imbalance in the number of patients 
between LGGs and HGGs, class weights were 
applied. In the case of LR with L2 regularization, 
the parameter λ was selected from 21 values [2-

10, 2-9, …, 29, 210]. The final LR model with optimal 
hyperparameters was constructed using 
signatures from the four single-sequence 
radiomic models from the training cohort. The LR 
model was evaluated using signatures from both 
the validation and testing cohorts. The 
constructed radiomic fusion model was 
validated using the four single sequence 
radiomic signatures of the validation cohort and 
tested using the four single-sequence radiomic 
signatures of the testing cohort. Furthermore, 
the weighted values associated with the 
corresponding single radiomic signatures in the 
radiomic fusion model denoted the 
contributions of various parameters in 
distinguishing between LGGs and HGGs. The 
prediction probability was defined as the 
radiomic fusion signature. 
 
Building the deep learning model 
Due to the complexity of 3D convolutional neural 
networks and the limited size of the patient 
dataset in this study, a different approach was 
adopted by utilizing slice images to create a 2D 
DenseNet121 model. Specifically, slice images 
with a cubic ROI were cropped to exclude non-
tumor areas. Each MRI sequence resulted in 
9,000, 2,265, and 4,931 slice images in the 
training cohort, validation cohort, and testing 
cohort, respectively. Four individual DL models 
were established using the four single MRI 
sequences. Additionally, a multimodal DL fusion 
model was developed by combining all four MRI 
sequences to generate a DL fusion signature. The 
slice images from the training cohort were 
employed for constructing these five DL models. 
The slice images of the validation cohort were 
fed into the constructed model to evaluate the 
performance of the  corresponding  constructed 

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
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Figure 2. Training, validation, and testing of the radiomic fusion model. Four single-sequence signatures were used as features to construct the 
radiomic fusion model. Std: Standard deviation.  

 
 

 
 
Figure 3. Framework of single-sequence DL model construction, based on slice images. Patient-level predictions were made using the average 
PRs at the slice level. PR: probability. 

 
 
model and select the corresponding best model. 
Finally, the slice images from the testing cohort 
were utilized to evaluate the performance of the 
selected DL model. 

 
1. Single-sequence deep learning model 
construction 
A DenseNet121 model was constructed using 
the corresponding slice images for each MRI 

sequence (Figure 3) [38]. To accommodate the 
varying dimensions of the slice images, the 
convolution layer of each DenseNet121 model 
was configured to accept a single input channel. 
Given the inconsistency in the dimensions of the 
slice images, they were resized to a uniform size 
of 64 × 64 pixels. Because the task involved 
binary classification to distinguish between LGGs 
and  HGGs,  the  output  dimensions  of  the  fully 
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Figure 4. Structure of CSG-DenseNet121. A. CSG fusion module was included in CSG-DenseNet121. The CSG fusion module consists of a channel 
attention module (B), a spatial attention module (C), and a global attention module (D). 

 
 
connected layers were set to two. A patient-level 
diagnostic strategy was employed. For each 
patient, the prediction probabilities (PRs) of 
LGGs and HGGs for all slice images were 
generated using the DenseNet121 model. The 
average prediction PRs of LGGs (LGG AVG_PR) 
and HGGs (HGG AVG_PR) across all slice images 
of a patient were calculated, which indicated the 
prediction PRs of LGGs and HGGs at the patient 
level, respectively. Therefore, if the LGG AVG_PR 
was larger than the HGG AVG_PR, the patient 
was identified as having LGG, otherwise, the 
patient was identified as having HGG. 

 
2. Multimodal deep learning fusion model 
Four MRI sequences were used to construct a 
multimodal DL fusion model (Figure 4). Slice 
images of the four MRI sequences were stacked 
before being fed into the multimodal DL fusion 

model. Within this model, a novel fusion module 
(Figure 4A) was devised, incorporating channel, 
spatial, and global attention modules. This fusion 
module, known as the CSG fusion module, was 
responsible for amalgamating information from 
multimodal MRI images. The structures of the 
channel attention, spatial attention, and global 
attention modules were shown in Figures 4B, 4C, 
and 4D, respectively [39, 40]. In the CSG fusion 
module, a feature map with four channels was 
generated by the channel and spatial attention 
modules. The map was then compressed into a 
feature map with one channel using a 
convolutional layer. In addition, another feature 
map with one channel was generated using the 
global attention module and a convolutional 
layer. The two feature maps were stacked and 
processed using a spatial attention module [39]. 
Finally,  a  feature  map  with  one  channel  was 
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Figure 5. Workflow of the RDL model construction. The radiomics and DL fusion signatures generated from four MRI sequences were used to  
construct the RDL model. 

 
 
generated and fed into DenseNet121. A patient-
level diagnostic strategy was also employed in 
the DL fusion model. The DL fusion signature was 
defined as the prediction probability of a patient. 
Five DL models were constructed using PyTorch 
(version 1.8.1) (https://pytorch.org) on a 
Windows computer. The number of epochs, 
batch size, and initial learning rate were set to 
100, 32, and 0.0001, respectively. After 20 
iterations, the learning rate was multiplied by 
0.1. A stochastic gradient descent optimization 
strategy was used. In addition, the gradient-
weighted class activation mapping (Grad-CAM) 
(https://arxiv.org/abs/1610.02391) was 
employed for visual investigation of the CSG-
DenseNet121 based on slice images [41]. 

 

RDL model construction 

The construction workflow of the RDL model 
using LR with L2 regularization was illustrated in 

Figure 5. The fusion signatures of the radiomic 
and CSG-DenseNet121 models from the training 
cohort were stacked to train an LR model with L2 
regularization to construct the RDL model. 
Before constructing the LRs, the signatures were 
normalized using a z-score transformation. The 
LR parameters were optimized during the 
training process using GridSearchCV. The class 
weight was used in the training process to 
overcome the patient number imbalance 
between LGGs and HGGs. The regularization 
parameter λ was selected from 21 values [2-10, 2-

9..., 29, 210]. The final LR with optimal 
hyperparameters was constructed using the 
fusion signatures from the training cohort. The 
constructed RDL model was validated using the 
radiomic and DL fusion signatures of the 
validation cohort and tested using the radiomic 
and DL fusion signatures of the testing cohort.  

https://pytorch.org/
https://arxiv.org/abs/1610.02391
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Table 2. Performance of the radiomic, DL, and RDL models in the validation cohort.  
 

Image data AUC P value Accuracy Sensitivity Specificity 
Radiomics_T1 0.670 <0.05* 61.76% 61.11% 56.25% 
Radiomics_T1C 0.924 0.080 88.24% 88.89% 81.25% 
Radiomics_T2 0.851 <0.05* 76.47% 77.78% 62.50% 
Radiomics_FLAIR 0.830 <0.05* 67.65% 61.11% 75.00% 
Radiomics_Fusion 0.972 0.245 94.12% 94.44% 93.75% 
DL_T1 0.854 <0.05* 76.47% 72.22% 81.25% 

DL_T1C 0.979 0.251 91.18% 88.89% 93.75% 
DL_T2 0.858 <0.05* 79.41% 88.89% 68.75% 
DL_FLAIR 0.771 <0.05* 70.59% 61.11% 81.25% 
DL_Fusion 0.986 0.362 94.12% 94.44% 93.75% 
RDL 1.000 Reference 97.06% 100.00% 87.50% 

Note: * indicated significant difference. 

 
 
Table 3. Performance of the radiomic, DL, and RDL models on the testing cohort.  
 

Image data AUC P value Accuracy Sensitivity Specificity 

Radiomics_T1 0.880 0.069 76.32% 90.91% 65.12% 
Radiomics_T1C 0.933 0.346 85.53% 87.88% 83.72% 
Radiomics_T2 0.708 <0.05* 65.79% 75.76% 58.14% 

Radiomics_FLAIR 0.727 <0.05* 72.37% 69.70% 74.42% 
Radiomics_Fusion 0.921 <0.05* 88.16% 90.91% 86.05% 

DL_T1 0.808 <0.05* 71.05% 69.70% 72.09% 
DL_T1C 0.899 0.057 77.63% 69.70% 83.72% 
DL_T2 0.791 <0.05* 69.74% 69.70% 69.77% 
DL_FLAIR 0.681 <0.05* 63.16% 57.58% 67.44% 
DL_Fusion 0.918 0.107 82.89% 90.91% 76.74% 
RDL 0.959 Reference 90.79% 90.91% 90.70% 

Note: * indicated significant difference. 

 
 

Results 
 

Patient characteristics 
There were no significant differences in age, 
gender, and race between the training dataset 
and testing cohorts or between the training and 
validation cohorts. However, the numbers of 
LGGs and HGGs differed significantly between 
the training dataset and testing cohort (P < 0.05). 
Conversely, there was no noticeable disparity in 
the prevalence of LGGs or HGGs between the 
training and validation cohorts. 

 
Classification performance of radiomics, DL, 
and RDL models in the validation cohort 
The performance of the radiomic, DL, and RDL 
models for glioma grading on the validation 

cohort were shown in Table 2. The results clearly 
indicated that the RDL model achieved the 
highest accuracy and AUC among all models. 
Specifically, the RDL model attained an AUC of 1, 
an accuracy of 97.06%, a sensitivity of 100%, and 
a specificity of 87.50%. Among the five radiomic 
models, the radiomic fusion model exhibited 
superior performance compared to the four 
single-sequence models. Likewise, within the 
five DL models, the DL fusion model (CSG-
DenseNet121) outperformed the other four 
single-sequence models.  

 

Classification performance of the radiomics, DL, 
and RDL models on the testing cohort 

The performance of the radiomic, DL, and RDL 
models  in  grading  gliomas  within  the  testing 
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Figure 6. Important features for radiomic fusion, DL fusion, and RDL models. A. Weight values corresponding to single radiomic signatures in the 

radiomic fusion models. B. Example of a heatmap of slice images for a patient. C. Weight values corresponding to the fusion signatures in the 
RDL. 

 
 
cohort was shown in Table 3. The results 
demonstrated that the RDL model achieved the 
highest accuracy and AUC compared with the 
other models. Specifically, the RDL model 
attained an AUC of 0.959, an accuracy of 90.79%, 
sensitivity of 90.91%, and specificity of 90.70%. 
Among the five radiomic models, the radiomic 
fusion model outperformed the four single-
sequence models. Additionally, the DL fusion 
model (CSG-DenseNet121) surpassed the other 
four single-sequence DL models. 
 
Important features of the radiomic fusion, DL 
fusion, and RDL models 
For the radiomic fusion model, the weight value 
associated with the T1C signature was the 
highest (Figure 6A), which indicated that T1C 
played a pivotal role in differentiating between 
LGGs and HGGs among all the evaluated 

signatures. Figure 6B provided insights into the 
DL fusion model, where Grad-CAM was 
employed based on the slice images. The Grad-
CAM heatmap demonstrated the DL fusion 
model's ability to detect tumors. In the case of 
the RDL model, the weight value corresponding 
to the radiomic fusion signature was slightly 
greater than that of the DL fusion signature 
(Figure 6C). Therefore, the radiomic fusion 
signature made the most substantial 
contribution to the discrimination between LGGs 
and HGGs among all the evaluated signatures. 
 
 

Discussion 
 
An RDL method to enhance the discrimination 
between LGGs and HGGs was developed in this 
study. A radiomic fusion model and a DL fusion 
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model incorporating a CSG fusion module were 
constructed before radiomic and DL fusion 
signatures from these models were generated. 
An RDL model, combining the radiomic and DL 
fusion signatures, was eventually established. 
Notably, the RDL model demonstrated 
remarkable performance with AUCs of 1 in the 
validation cohort and 0.959 on the testing 
cohort. Furthermore, the radiomic and DL fusion 
model outperformed their respective single-
sequence models.  
 
A radiomic fusion signature by combining four 
individual radiomic signatures was generated in 
this study. The radiomic signature was created 
through LR, a multivariate analysis method that 
considered all features as a cohesive entity [42], 
to discriminate LGGs and HGGs based on the 
distinctive patterns among these features. 
Consequently, the original radiomic features 
were amalgamated into a comprehensive 
radiomic signature, effectively reducing feature 
dimensions for the RDL model while preserving 
the essence of the original features. The 
proposed method of this study excelled in 
performance compared to the four single-
sequence radiomic models. The radiomic fusion 
model harnessed information from the four MRI 
sequences via radiomic signatures with minimal 
feature dimensions. However, note that the 
original radiomic features were extracted from 
the ROI based on empirical knowledge, limiting 
the information to the interior of tumors 
delineated using this method. By contrast, DL 
could extract image features through 
convolution operations, encompassing the 
entire input image without relying on specific 
medical expertise. Consequently, the DL fusion 
signature encapsulated global information. In 
this research, an RDL model by combining 
radiomic and DL fusion signatures was 
constructed, enabling the model to access both 
local and global information related to gliomas, 
which significantly improved discrimination 
between LGGs and HGGs. Comparatively, Ning et 
al. merged radiomics and DL features to assess 
glioma grading based on T1C and FLAIR images 
[30]. By contrast, this study employed radiomic 

and DL signatures to construct a model for 
discriminating between LGGs and HGGs. 
Notably, this study achieved better performance 
than the study by Ning et al. [30]. Two potential 
reasons for these performance differences could 
be the incorporation of additional MRI 
sequences and variations in feature fusion 
methodologies. 
 
The DL fusion signature was derived from a 
specific DL fusion model known as CSG-
DenseNet121, which exhibited the highest 
performance in discriminating between LGGs 
and HGGs. Within the CSG-DenseNet121 model, 
a CSG fusion module was employed before 
applying DenseNet121, which was designed to 
effectively integrate diverse information 
provided by different MRI sequences. The CSG 
fusion module operated from two distinct 
perspectives to extract valuable features. The 
first perspective utilized channel and spatial 
attention modules, enabling the extraction of 
features that were not only important in 
individual channels but also in their spatial 
context. The channel attention module played a 
vital role in selecting crucial MRI sequences, 
while the spatial attention module directed the 
classifier's focus toward tumor-related regions. 
Consequently, this combination of channel and 
spatial attention empowered the classifier to 
prioritize tumor regions within critical MRI 
sequences without disregarding information 
from other imaging modalities, ultimately 
enhancing prediction accuracy. Additionally, a 
global attention module was incorporated to 
generate a feature map from another 
standpoint, which reduced information 
redundancy while amplifying global dimension-
interactive features [40]. By combining the 
feature maps generated from these two 
perspectives, a fusion feature map was created 
to encapsulate comprehensive information from 
the four original MRI sequences, thereby 
improving the accuracy of distinguishing 
between LGGs and HGGs. However, according to 
the Grad-CAM findings, although the DL fusion 
model could identify tumors, it was not perfectly 
focused on them. This observation might explain 
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the relatively lower weight assigned to the DL 
fusion signature in the RDL model, which was 
constructed by incorporating both radiomic and 
DL fusion signatures. The present study 
employed slice images to construct DL models, 
following similar methods as previous studies 
[43], thereby increasing the number of samples 
available for constructing the DL models. 
Compared with 3D DenseNet121, 2D 
DenseNet121 had fewer parameters. The 
number of patients included in this study was 
small, making it challenging to train the 3D 
DenseNet121 model using 3D MRI images. 
Therefore, 2D DenseNet121 models were 
constructed using image slices to discriminate 
between LGGs and HGGs. In addition, we found 
that the T1C-based single-sequence radiomic 
and DL models performed better than the T1-, 
T2-, and FLAIR-based single-sequence models. 
Further, in the radiomic fusion model, the weight 
of the T1C signature was greater than that of the 
other MRI signatures. These weight values 
indicated the contribution of the corresponding 
signature when discriminating between LGGs 
and HGGs. The results were consistent with the 
results of previous studies [44], which might be 
attributed to the breakdown of the blood‒brain 
barrier. HGGs often disrupt the blood‒brain 
barrier, whereas LGGs do not exhibit breakdown 
of the blood‒brain barrier, which can be 
detected using T1C images. Therefore, the T1C 
level could be a potential diagnostic tool for 
glioma grading. 
 
The current study was subject to two 
noteworthy limitations. First, the patient sample 
size in this study was relatively small. To assess 
the performance of the RDL model more 
comprehensively, future investigations should 
encompass a larger and more diverse patient 
cohort drawn from multiple healthcare 
institutions. Second, cropped slice images were 
used in DL models and the cropping process was 
reliant on tumor segmentation. In future 
research, it is advisable to employ entire images 
rather than cropped ones when constructing DL 
models. This approach would eliminate the 
dependence on tumor segmentation and could 

potentially enhance the model's performance 
and applicability. 
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