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Geologic identification of small faults in coalfields is an important issue in coal mining. The existence and nature 
of small faults have an important impact on mine safety and coal mining efficiency. To solve the problem of 
inaccurate geological identification of small faults in coalfields, this study proposed a method based on Bayes 

algorithm and limit gradient lifting to construct an efficient and accurate geological identification model of small 
faults in coalfields by combining the advantages of Bayesian theory and limit gradient boosting algorithm to 
achieve accurate identification of small defects by probabilistic modeling of data using Bayesian theory. 
Meanwhile, the study utilized the efficient feature selection and model construction ability of the limit gradient 
boosting algorithm, which made the proposed model capable to not only handle high-dimensional data, but also 
overcome the noise and incompleteness problems in the data, thus effectively performing the geological 
identification of small faults. The results showed that the model's average accuracies on the two experimental 
datasets were 93.6% and 92.4%, respectively, while the average F1 values of the model were 90.6% and 93.0%, 
respectively, which were all better than that of control model. The results suggested that the proposed model 
was advanced and addressed the issues of low efficiency and time consumption in traditional coalfield exploration 
methods, which offered a new detection technology for coalfield exploration and mining, as well as promoted the 
development of related industries. 
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Introduction 
 

Coal, one of the world's most significant energy 
resources, is crucial to both economic growth 
and the availability of electricity. However, the 
existence of fault geology in the exploration and 
mining process of coal fields poses great 
challenges to mine safety and coal resource 
evaluation [1]. The existence of coalfield minor 
fault (CMF) brings multiple effects on mine 
mining and coal resource evaluation, such as 
deformation and rupture of coal seams, changes 

in distribution and permeability of coalbed 
methane, and increased safety risk of coal 
mining [2]. In addition, the existence of small 
faults may lead to the instability of the coal mine 
working face and the expansion of coal seam 
fissures, thus affecting the productivity and 
safety of the mine [3]. Conventional techniques 
for identifying fault geology mostly depend on 
engineering surveys and geological exploration, 
which includes seismic surveys, geological 
surveys, and geological exploration boreholes. 
However, these methods have problems such as 
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inconsistent data quality, difficulty in feature 
selection, and complex model construction [4]. 
Accurately identifying and evaluating the 
location and nature of small faults can aid in 
formulating plans for coal resource exploration 
and mining and improve resource utilization 
efficiency. However, small faults in coalfields 
often have characteristics such as large dip 
angles, short lengths, small displacements, and 
complex shapes, which make comprehensive 
detection and identification difficult using 
ordinary methods [5]. 
 
The eXtreme gradient boosting (XGBoost) 
algorithm is a popular technology that has been 
applied in many fields and has been optimized 
and improved by many researchers to address its 
shortcomings. Asselman et al. found that Bayes 
algorithm (BA) demonstrated high prediction 
accuracy and tried to apply this algorithm to 
analyze students' behavior during the learning 
process. They proposed an XGBoost based PFA 
method which gave the PFA model a better 
scalability through the XGBoost framework to 
improve the prediction accuracy of students' 
performance. The results showed that the 
proposed scalable XGBoost-PFA method was 
experimentally validated to outperform other 
assessment models and significantly improved 
the prediction accuracy of student achievement 
[6]. Budholiya et al. proposed a diagnostic 
system that utilized an optimized XGBoost 
framework as the core to construct a classifier to 
predict heart disease. The results indicated that 
the proposed model had higher accuracy than 
most of the same type methods [7]. Osman et al. 
proposed an accurate groundwater level 
prediction model to study the groundwater level 
in Malaysia using Xgboost algorithm and artificial 
neural network to predict the local groundwater 
level for 11 months. The research compared the 
accuracy of different model outputs using local 
rainfall, temperature, and evapotranspiration as 
inputs and a support vector machine model as a 
control. The results showed that the accuracy of 
the proposed model reached 92%, which was 
11% higher than that of control model [8]. A new 
deep learning model for the classification 

problem using convolutional limit gradient was 
described by Thongsuwan et al. based on the 
XGBoost algorithm and convolutional neural 
networks. The model demonstrated good 
generalizability. In addition to processing image 
data, the proposed model could support 
classification and prediction after feature 
learning. The results showed that the 
performance of the proposed model was 
superior to that of the convolutional and 
XGBoost models alone [9]. Zhu et al. proposed a 
robust probabilistic machine learning model to 
predict the distribution of rockheads using 
spatial geographic information. The model 
combined natural gradient boosting with 
XGBoost to construct the basic learner and 
predict the spatial information of rockheads, 
addressing the problem of uncertainty in their 
variation. The results indicated improved 
accuracy in predicting rockhead spatial 
information compared to previous neural 
networks [10]. 
 
The Bayesian optimization algorithm is a method 
of probability inference based on the Bayesian 
theorem, which can be applied to various 
machine learning problems including probability 
inference, classification, regression, and 
clustering. The algorithm is one of the most 
popular algorithms at present and hence several 
researchers have optimized it. Wickramasinghe 
and Kalutarage attempted to classify medical 
products based on BA. A simple but efficient 
model known as plain BA classification model 
was developed. Since the assumptions of BA 
could not fully fit the real data, the plain BA 
utilized dynamic changes to satisfy the general 
data. The results suggested that the plain BA 
classification model showed strong robustness in 
numerous classification tasks [11]. Liu et al. 
found that the experience of random effects in 
the multilevel model always deviated from the 
overall mean. Therefore, they proposed an 
empirical prediction model based on BA. The 
model utilized BA to update and adjust the 
random effects in the multilevel model to reflect 
its real situation more accurately. By introducing 
priori information and real-time data, the model 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 17:196-208 

 

198 

 

could gradually correct the empirical predictions 
of the random effects. The results proved that 
the proposed model showed high accuracy in 
applications [12]. Jospin et al. constructed an 
efficient assessment tool based on Bayes' 
quantitative features and deterministic fusion of 
deep learning algorithms. The uncertainty 
associated with deep neural network prediction 
was understood and quantified through BA, 
which greatly reduced the computational 
complexity of the model. Tests showed that, 
compared to conventional deep learning 
algorithms, the model performed better in terms 
of accuracy and computational speed [13]. Sun 
and Zhou found that convex optimization 
algorithms were useful in solving the problems 
faced by BA in applications and used biased 
random key genetic algorithm to improve BA. 
The performance of the proposed algorithm was 
enhanced by an improvement procedure that 
employed the local optimization model as its 
decoder, while an XSS attack was used to assess 
the rebuilt model's cybersecurity. The enhanced 
algorithm performed better in cybersecurity 
[14]. Laumont et al. proposed a Monte Carlo 
sampling scheme to optimize BA. The traditional 
BA often encountered the problems of large 
computation and slow convergence when 
dealing with large-scale datasets, which made 
the algorithm very limited in practical 
applications. The optimized BA solved the 
problem of no known proof of convergence, and 
at the same time, it had a large improvement in 
terms of computational speed and accuracy [15]. 
 
This study utilized the previous research data to 
construct an efficient model for identifying small 
faults in coal fields using Bayes-XGBoost 
algorithm to address the limitations of 
conventional methods for detecting small faults 
in coal fields, which are inefficient and time-
consuming. To achieve fast and efficient 
identification of small faults in coal fields, a 
Bayesian optimization method was explored to 
automatically adjust the hyperparameters of the 
XGBoost model, which improved the 
performance and generalization ability of the 
model. By automatically adjusting the 

hyperparameters, the method could be better 
adapted to different datasets and task 
requirements, thus improving the accuracy and 
stability of the model. The results of this study 
would solve the fault geology identification 
problem and could enhance the efficiency of the 
coal mining surveying industry, promoting its 
development. Additionally, it would offer 
guidance for geological identification issues in 
other fields. 

 
 

Materials and methods 
 
Geological recognition model construction 
based on XGBoost framework 
XGBoost is a powerful machine learning 
framework that is based on the gradient 
boosting tree algorithm [16]. It performs well in 
many data science competitions and real-world 
applications and is widely used in tasks such as 
regression, classification, sorting, and 
recommender systems [17]. XGBoost framework 
has better recognition classification results for 
small scale targets, so the algorithm could be 
used for CMF recognition. The structure of 
XGBoost framework was shown in Figure 1. The 
core of the XGBoost framework was the gradient 
boosting tree, which was an integrated learning 
method that progressively improved the 
performance of the model by iteratively training 
multiple decision trees [18]. Each decision tree 
was trained on the residuals of the previous tree, 
thus gradually reducing the prediction error of 
the model. The gradient boosting tree 
computation process was shown in Figure 2. 
However, the XGBoost framework has defects 
such as difficulty in parameter tuning and 
overfitting, so it is necessary to improve the 
XGBoost framework. The original objective 
function of XGBoost is shown in equation (1). 

 

( ) ( ) 2

1 1

1
,

2

n T

i i j

i j

F x l y y T w 
= =

= + +      (1) 

 

where ( ),i il y y  was the loss function of the 

XGBoost  framework.  x   was  the  input  sample. 
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Figure 1. XGBoost framework structure. 
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Figure 2. Gradient boosting tree calculation flowchart. 

 
 

iy  was the true value of the sample. iy  was the 

predicted value of the input sample. T  was the 
number of nodes. n  was the input samples.   
was the paradigm coefficient of the node 

shrinkage coefficient.   was the node shrinkage 

coefficient. w  was the weight matrix. The goal 
of binary classification, a popular machine 
learning job, was to divide data samples into two 
groups or labels. In a binary classification, each 
sample could only belong to one of these two 
categories. After binary classification classified 
the input samples, it reduced the computational 
cost of XGBoost in recognition and played a 
positive role in the recognition efficiency of the 
model [18]. After introducing binary 
classification, the objective function would 
increase the weights of certain samples. The 
optimized objective function would no longer 
adjust the parameters using the previous loss 

function, but instead use the cross-entropy 
function. The computational expression of the 
cross-entropy function was shown in equation 
(2). 
 

( ) ( ) ( )1

1

1
log 1 logi i

n
p p

i i

i

s y y
n

−

=

= − + −  (2) 

 

where ip  was the distribution probability of the 

sample predicted values. The distribution of the 
model's anticipated probabilities for each 
category was the distribution probability of the 
sample predicted values. The cross-entropy 
function was used to measure the difference 
between the actual samples and the model 
predictions, which included the model's 
predicted probabilities for each category [19]. 
The predicted probability distribution was 
gradually   optimized   by  minimizing   the   cross- 
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Figure 3. XGBoost framework runtime flowchart. 

 
 
entropy loss during model computation to make 
it closer to the distribution of the actual labels. 
The formula for calculating the distribution 
probability of the sample predicted values was 
shown in equation (3). 
 

1

1 i
i y

p
e
−

=
+

 (3) 

 
The cross-entropy function was relatively simple 
for the gradient calculation of model 
parameters, which could further reduce the 
computational complexity of the model. After 
the introduction of the cross-entropy function, 
XGBoost could recognize CMFs more quickly and 
did the real-time feedback needs. The optimized 
objective function expression was shown in 
equation (4). 
 

( ) ( ) ( ) ( ) ( )1

1

1 log 1 logi i

n
p p

i i i

i
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−

=
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 


     (4) 
 

where K  was the weight of the true value of the 
sample. Since the improved objective function 
could realize the adjustment of the weights, the 
model could change the weights according to the 
characteristics of the input data to achieve a 
better recognition effect. The expression of 
weights adjustment was shown in equation (5). 
 

i

i

G
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H 
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where iG  was the first order derivative sum of 

the regularization term ( )ix . iH  was the sum 

of second order derivatives of ( )ix . The 

expressions for iG  and iH  were shown in 

equation (6). 
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where 
ig  and 

ih  were the first order derivatives 

as well as the second order derivatives of ( )ix

, respectively.   was the node weight 
coefficients. Where the expression of the 

regularization term ( )ix  was shown in 

equation (7). 
 

( )
1

T
T

i j

j

x T w  
=

= +   (7) 

 

where   was 2L  paradigm and   was node 

weight coefficient. After optimization, the 
XGBoost framework had advantages in terms of 
performance, scalability, accuracy, and 
robustness. The final output function of XGBoost 
was shown in equation (8). 
 

( ) ( ) ( )
1 1

,
n T

out i i i

i i

f x l y y x
= =

= +   (8) 

 
At this point, the construction of the geo-RM of 
CMF based on XGBoost framework was 
completed, and the operation flowchart of this 
model was shown in Figure 3. It was found in the 
study that XGBoost had certain shortcomings 
when recognizing CMFs. For example, the model 
might be interfered by data noise when dealing 
with complex geologic structures, leading to a 
decrease in prediction accuracy. In addition, 
XGBoost's ability to recognize different types of 
small fault lands varied, and the model might 
misjudge or miss some special types of small 
fault lands. 
 
Construction of geological recognition model 
for XGBoost framework based on Bayes 
optimization approach 
Bayes optimization is an iterative method for 
optimizing an objective function [20]. It is 
suitable for those cases where the objective 
function is difficult to optimize directly, such as 
highly nonlinear, noisy disturbances, or black-
box functions (without explicit expressions) [21]. 
The core idea of Bayes optimization is to use 

Bayes' theorem to model the objective function 
and use a posteriori probability to guide the next 
optimization decision. The schematic diagram of 
BA is shown in Figure 4.  
 
 

+

+

+

P(b)

0.999

P(e)

0.998

P(e1)

0.002

P(a-e)

0.29

P(j-a)

0.90

P(j-a)

0.90
P(j-a1)

0.05

P(j-a1)

0.05

P(m-a)

0.70

P(m-a)

0.70

P(m-

a1)

0.01

P(m-

a1)

0.01

P(a-e)

0.70
P(a-e)

0.001

P(a-e)

0.999

 
 
Figure 4. Schematic diagram of Bayes algorithm. 

 
 
In each iteration, Bayes optimization synthesized 
previous observations and prior knowledge to 
construct a Gaussian process model (or Gaussian 
process regression model), which estimated the 
unknown region of the objective function [22]. In 
the Bayes optimization method, the acquisition 
function was the most important part. The 
acquisition function was a criterion used to 
select the next sample point to be evaluated, 
which combined the predicted value of the 
objective function and uncertainty to find 
possible improvements in unexplored regions 
[23]. The common acquisition functions were PI 
function, UCB function, etc., and the expression 
of PI function was shown in equation (9). 
 

( ) ( )( )
( )

( )
,

t

t t

t

c u x
a x d P x c

x


  



 − −
=  − =   

 

(9) 

 
where c  was the optimal solution of the 

function.   was the balancing parameter in the 
current collection, which was usually used to 
balance the difference between the local 

searches made. ( ).  was the density function of 
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the global sample normal distribution. 
td  was 

the relative entropy of the PI function. ( )tu x  

was the average estimate of the sample before 

time step t . ( )t x  was the number of times 

the sample x  being selected before time step t
. The PI function was a parameter-free method 
based on the predicted results of the model [24]. 
It did not depend on the specific form of the 
model or parameter settings but evaluated the 
importance of the features by randomly 
rearranging them. The UCB function, on the 
other hand, was mostly used in multiple 
classification tasks, and the mathematical 
expression of the UCB function was shown in 
equation (10). 
 

( ) ( ) ( ),t t t tx d u x x  = +  (10) 

 
where   was the tuning parameter of the 
classification term, which optimized the 
classification process by changing the value of 
confidence in the multinomial classification and 
thus optimizing the classification process. The 
XGBoost framework's inability to do global 
searches led to the use of the PI function as the 
model's acquisition function in this investigation 
[25]. However, the PI function also suffered from 
sampling bias and was not robust to highly noisy 
objective functions. So, further improvements to 
the function were needed. This study mainly 
improved the adaptive ability of the balance 
parameters of the PI function and avoided the 
problem of acquisition bias by introducing an 
adaptive algorithm to adjust and optimize the 
balance parameters. Equation (11) displayed the 
revised PI function's expression. 
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u x y
PI x

x



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 − −
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 
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where   was the adaptive function. maxy  was 

the maximum value of the objective function of 
the current input sample. The computational 

expression of the adaptive function was shown 
in equation (12). 
 

max

1
1

y y
e


−

= −  (12) 

 

where y  was the theoretical maximum of the 

objective function. Equation (13) displayed the 
function's expression at the point where the 
adaptive function approached the theoretical 
maximum. 
 

( ) max

max

lim 1
1 0

0 y yy y e
−

− =
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 (13) 

 
where lim  was the seeking limit. 

( )max 0y y − →  was the condition of the limit, 

i.e., the limit when y  converged to maxy . The 

acquisition function in this state was mainly used 
for data acquisition and categorization, while the 
acquisition function was mainly used for 
exploring the connection between the data 

when y  was much larger than maxy , and the 

expression for this case was shown in equation 
(14). 
 

( ) max

max

lim 1
1 1

y yy y e
−

− =
− →

 (14) 

 
After the improvement of the PI function, the 
XGBoost framework based on the Bayes 
optimization method of geologic RM 
optimization was completed. The model was 
referred to as the Bayes-XGBoost model. The 
operation flowchart of Bayes-XGBoost model 
was shown in Figure 5. 
 
Testing of model performance 
To analyze the performance of the Bayes-
XGBoost model, a Dell G7 series laptop with a 
CPU of i9-9960X, 16GB of working memory, and 
an RTX 4090 D graphics card was used with 
Microsoft's  Windows  11  operating  system  and 
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Figure 5. Bayes-XGBoost model running flowchart.  

 
 
Microsoft Visual C++ (2019). The tests employed 
the deep learning coal mine image dataset 
(https://doi.org/10.57760/sciencedb.j00001.00
793) and the CDSet dataset 
(https://pan.baidu.com/s/1KCOQc0Qq9HVSYLc
7v2Rigw), a line segment detection dataset, 
which could be used to simulate the distribution 
of coal field interruption layers and included five 
types of underground structural coal in Chinese 
coal mines from 2020 to 2021 [26]. The 
reference models including deep coal seam 
mining area recognition model based on the 
backpropagation neural network (BPNN) 
algorithm [27] and coal gangue position and 
shape recognition model based on the regional 
convolutional neural network (RCNN) algorithm 
[28]. Those two popular models used as the 
controls in this study performed well in terms of 
recognition accuracy. 
 
 

Results 
 

Performance comparison of various models  
Two datasets, coal mine image dataset and 
CDNet, were utilized as inputs in this study, 
respectively, to compare the prediction 
accuracies of BPNN, RCNN, and Bayes-XGBoost 
models. The results showed that the Bayes-

XGBoost model demonstrated the highest 
accuracy of 92.3% and 89.6% on the two 
datasets, respectively, with the average accuracy 
higher than that of the control models (Figure 6). 
In addition, the Bayes-XGBoost model 
outperformed the RCNN and BPNN models by 
4.7% and 5.6%, respectively, with an average 
accuracy of 92.4% on the coal mine image 
dataset (Figure 7a) and 93.6% on the CDNet 
dataset (Figure 7b). In contrast, RCNN and BPNN 
had accuracy rates of 90.2% and 86.1%, 
respectively.  
 
ROC curves of various models 
The receiver operating characteristic (ROC) 
curve, a popular tool for assessing the 
effectiveness of classification prediction models, 
was employed to explore the relationship 
between true positive rate (TPR) and false 
positive rate (FPR) under various classification 
levels. The area under the curve (AUC) value 
increased with increasing area enclosed by the 
curve and reference line in the ROC plot, 
indicating improved model performance. The 
results showed that the Bayes-XGBoost model 
had the largest AUC values on both datasets, 
indicating a better performance of Bayes-
XGBoost model than that of BPNN and RCNN 
models (Figure 8).  
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Figure 6. Comparison of accuracy of various models. 
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Figure 7. Comparison of precision of various models.  
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Figure 8. Comparison of ROC curves of various models. 
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Figure 9. Comparison of RP curves of various models. 
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Figure 10. Comparison of loss rate and average loss rate. 

 
 
Precision-recall curves of various models 
The precision-recall curve (PRC) is a common 
tool for evaluating model performance. The 
curve is based on the relationship between 
precision and recall and is plotted by calculating 
precision and recall at different thresholds. The 
results demonstrated that the slope of the PRC 
of the Bayes-XGBoost model was closer to 1, 
thus the model had a more balanced growth of 
precision and recall, and the stability of the 
model was better than other models (Figure 9). 

The loss rates of various models 
The study analyzed the loss rates of the BPNN, 
RCNN, and Bayes-XGBoost models vs. the 
number of iterations, as well as the average loss 
rate after convergence to test the loss rates of 
the proposed model using the coal mine image 
dataset as input. The results showed that the 
Bayes-XGBoost model loss rate decreased the 
fastest, and the loss rate tended to be close to 0 
after about 120 iterations (Figure 10a). After 
multiple   tests,   the  average  loss  rate  of  each 
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Figure 11. Comparison of RMSE values among different models. 
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Figure 12. Comparison of F1 values among different models. 

 
 
model and the trend of the average loss rate 
change was roughly the same as that 
demonstrated in Figure 10(a) (Figure 10b). The 
results indicated that the Bayes-XGBoost 
model's overall loss rate was lower than that of 
the control models. 
 
Comparison of Root Mean Square Errors 
Regression model performance is often 
evaluated using the Root Mean Square Error 
(RMSE) measure, which calculates the mean 
difference between the values that the model 
predicts and the actual values that are observed. 
The study compared the RMSE values of the 
models using the two datasets as inputs. The 
Bayes-XGBoost model showed the lowest RMSE 
value of 1.47, which was 0.02 lower than that of 

the RCNN model. The evolution of RMSE values 
of the models on coal mine image dataset 
regarding the training time was shown in Figure 
11a. The trend of RMSE values of the models on 
CDNet dataset was shown in Figure 11b. The 
RMSE value of Bayes-XGBoost model on this 
dataset reached 1.45, which was smaller than 
that in the control models at any training 
moment.  
 
The F1 value is a common metric for model 
evaluation. This study used coal mine image and 
CDNet datasets as inputs to compare the F1 
values of BPNN, RCNN, and Bayes-XGBoost 
models. The tests were performed three times in 
the study to eliminate the impact of random 
variables. The F1 values of the BPNN, RCNN, and 
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Bayes-XGBoostsang models on coal mine image 
dataset were 79.2%, 71.7%, and 90.6%, 
respectively (Figure 12a). On the CDNet dataset, 
the average F1 value of the Bayes-XGBoostsang 
model was 93.0%, while the average F1 values of 
the BPNN and RCNN were 82.7% and 80.8%, 
respectively (Figure 12b). 
 
 

Discussion 
 
To test the stability of the proposed model, 
several control experiments were designed. The 
results of these experiments demonstrated that 
the Bayes XGBoost model accurately predicted 
and recognized faults, which was due to the 
Bayesian optimization algorithm's ability to 
classify samples quickly and accurately. 
Therefore, during dataset sample processing, 
the model only needed to recognize them by 
category. The Bayesian optimization algorithm 
enhanced the feature learning ability of the 
XGBoost algorithm in samples of the same 
category, thereby improving the model's overall 
predictive and recognition performance. 
Additionally, the XGBoost algorithm exhibited 
strong anti-interference ability and fault 
tolerance. When abnormal sample recognition 
occurred, the XGBoost algorithm would provide 
feedback and re-identify. This feedback 
mechanism resulted in a proposed model with a 
higher number of positive samples than negative 
samples. As a result, the proposed model 
outperformed the control models in terms of 
recall, P-R curve, F1 value, and other indicators. 
The study also compared the proposed model 
with PBNN and RCNN models and consulted 
other materials. Zhang et al. proposed a coal 
gangue loading rate model based on 3D image 
features and grey wolf optimized support vector 
machine [29]. Jabeur et al. also proposed an 
XGBoost algorithm and SHAP interaction value 
prediction model [7]. The model performance 
tests demonstrated that the proposed model 
had advantages in computational efficiency and 
training difficulty. The experimental results 
revealed that the proposed coal field small fault 
identification model effectively solved the 

difficulties encountered in traditional coal field 
surveys. The Bayes-XGBoost model could be 
used to obtain the distribution of coal mine 
faults quickly and accurately below the bottom 
layer, providing reliable geological data for coal 
mining. The proposed model had a wide range of 
applications, including identifying and predicting 
small faults in coal fields and other geological 
exploration research. Its proposal promoted the 
development of the coal mining industry and 
provided new ideas for geological exploration, 
hydrological, and water conservancy surveys. 
Overall, the proposed model had practical 
significance. 
 

 
Conclusion 

 
The identification of fault geology is a crucial task 
in the process of coal field exploration and 
mining. However, traditional fault identification 
methods face many challenges in practice, such 
as variable data quality, accuracy of feature 
selection, and complexity of model construction. 
These factors make the accurate identification of 
small faults a challenging task. Therefore, this 
study proposed a Bayes-XGBoost model that 
aimed to promote the development of geo-RM 
for CMF and provide better safety for the coal 
mining industry. The results indicated that the 
proposed model outperformed the control 
models in terms of recognition accuracy, average 
precision, F1 value, and other metrics. 
Therefore, the proposed model was progressive. 
Some shortcomings of the proposed model were 
also found in the study. Since the generalization 
ability of the Bayes-XGBoost model depended on 
the quality and diversity of the training data, the 
generalization ability of the model could be 
improved when the training data types were not 
duplicated. The proposed model in this study 
was expected to solve the shortcomings of 
insufficient generalization ability by other 
optimization methods, which would bring new 
ideas for the development of geo-RM for CMF. 
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