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In order to provide a method to accurately predict the fatigue level of athletes, this study proposed a fatigue 
muscle strength estimation model for athletes based on electromyography signals. The model achieved prediction 
of the electromyography-muscle force relationship by continuously generating new solutions and sorting and 
updating them according to the cost function in order to find the optimal model parameters. The experimental 
data showed that the low and high frequency components of electromyography signals were effectively removed 
after band-pass filtering at 50 - 300 Hz, resulting in clearer and more accurate signals. The mean frequency and 
median frequency showed a high negative correlation with fatigue severity with correlation coefficients of -0.766 

and -0.663, respectively. Compared to the classical polynomial fitting model, the error of the Laguerre-Volterra 
network feature-weighted local sparsity correction model was reduced by approximately 5%, and the model fit 
was improved by approximately 21%. The results showed that the fatigue strength estimation model based on 
electromyography signals could accurately predict the fatigue level of athletes, which could provide an important 
basis for optimizing athletes' training plans and improving athletic performance. 
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Introduction 
 

Fatigue is one of the common problems faced by 
athletes during prolonged high-intensity training 
or competition [1]. Understanding the level of 
fatigue in athletes is important for optimizing 
training programs and improving competitive 
performance. As the level of competitive sports 
continues to improve, it has become increasingly 
important for athletes to recognize and manage 
fatigue [2]. Currently, there are many methods 
to assess the level of fatigue in athletes including 
heart rate variability, blood biochemical 
indicators, psychological questionnaires, etc. [3]. 
However, these methods often require complex 
equipment and specialized personnel, limiting 

their application in practical training scenarios. 
Electromyography (EMG) is a bioelectrical signal 
that records muscle activity, which can reflect 
the contraction and relaxation state of muscles 
and is therefore widely used in the fields of 
exercise physiology and rehabilitation medicine 
[4]. In recent years, more and more studies have 
shown that there is a correlation between EMG 
signals and the degree of fatigue, and therefore, 
it can be used to estimate the fatigue muscle 
strength of athletes. The non-invasive, real-time 
nature of EMG signals and their direct 
correlation with muscle activity make them an 
ideal fatigue monitoring tool [5]. EMG is a 
technique for recording and analyzing the 
electrical activity of muscle cells by means of 
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electrodes or stimulation of the skin surface, and 
can be used to assess muscle fatigue, nerve 
injuries, and the diagnosis and treatment of 
motor and neurological disorders. Moissenet et 
al. evaluated the effect of two different 
normalization tasks for the rectus femoris 
muscle on the quality of the EMG signals, as well 
as the diurnal and interlay ratings of the 
amplitude of the EMG signals under both intra- 
and inter-day rating reliability tasks. The results 
showed that the signal-to-noise ratio was 
greater than 15 dB for the two different 
normalizations tasks [6]. Dideriksen et al. 
investigated the correlation between synaptic 
inputs to the motor neuron pool and muscle 
force including different synaptic command 
signal bandwidths and muscle contraction 
characteristics. The results showed that 
cumulative spike training to estimate the 
entropy of descending muscle force commands 
could better reflect the sequential behavioral 
changes [7]. Wang et al. proposed the strategy 
of using cell-free materials for muscle damage 
repair and predicted muscle atrophy by EMG 
signal acquisition. The results showed that the 
maximum contraction force of denervated 
muscles was restored by 50% after muscle 
damage repair [8]. Takenaka et al. used motor 
imagery in a reaction-time task paradigm and 
measured EMG changes associated with muscle 
contraction and relaxation and found that the 
excitability of contraction and diastolic motor 
imagery showed a sustained increase, a 
transient increase, and a subsequent decrease in 
excitability, respectively [9]. Tang et al. used 
time-delayed neural network mapping to classify 
muscle movements and control an external 
hardware device by controlling the EMG. The 
results showed that the maximum average 
classification rate of the model was 91.09% and 
91.55% for reference power features and 
frequency band power features, respectively 
[10]. 
 
Human fatigue state estimation refers to the use 
of various methods and techniques to determine 
and assess the degree of fatigue of the human 
body during a specific task or exercise. This 

estimation can be achieved by monitoring and 
analyzing physiological and psychological 
indicators of the human body. Li et al. assessed 
the changes in muscle state during fatigue using 
image entropy by capturing static sustained 
contraction parameters of the biceps muscle at 
four different intensities of the athletes. The 
results showed a gradual increase in the root 
mean square value of surface EMG during 
sustained contraction [11]. Rakshit et al. found 
that the Three Compartment Controller (3CC-r) 
muscle fatigue model could predict the 
performance of both sustained and intermittent 
isometric contractions through a comprehensive 
validation of the model. The results showed that 
the prediction error of the model could be 
reduced by 8% after considering the effects of 
functional muscle groups and gender [12]. Wang 
et al. proposed a driving fatigue detection 
method based on phase lag exponential 
graphical attention network (PLI-GAT), which 
used PLI to construct a functional brain network 
reflecting the relationship between different 
channels of EEG signals and to model the 
multichannel time-frequency features as 
graphical data using GAT to train the driving 
fatigue monitoring model. The results showed 
that the accuracy of this method for fatigue state 
recognition reached 85.53% [13]. Kim et al. 
investigated the use of ultrasound speckle 
tracking to assess muscle contractility and built a 
dynamic model to determine and update the 
optimal inputs to the neuromuscular system in 
real time. Experiments demonstrated that peak 
strain and maximum knee torque during 
isometric knee extension of the quadriceps 
muscle measured by ultrasound imaging could 
reflect the strain field and fatigue level 
correlations of the target muscle [14]. Villanueva 
et al. proposed an improved model-based 
approach to quantify subjective fatigue accrued 
from mid-air interactions, which additionally 
captured the maximum arm posture-based arm 
strength and added model parameters based on 
linear changes in current muscle strength. The 
results showed that the model was able to 
reduce the fatigue estimation error by 42.5% 
compared to previous methods [15]. 
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Many researchers have done different studies 
and designs for EMG and fatigue estimation. 
However, the scope of application of these 
methods and models still needs to be improved. 
Relatively few studies have been conducted on 
fatigue muscle force estimation models for 
athletes based on EMG signals. Therefore, the 
aim of this study was to explore the relationship 
between EMG signals and athletes' fatigue 
muscle strength and to establish a reliable 
estimation model based on electromyography 
signals, which could accurately predict the 
degree of athlete fatigue and provide important 
basis for optimizing athlete training plans and 
improving sports performance.  

 
 

Materials and methods 
 

Research subjects 
This study recruited 20 college student 
volunteers including 10 males and 10 females 
and all aged 25. The volunteers had no history of 
muscle related illnesses, and all came from the 
same university in Beijing, China. The testing was 
conducted at the university's gymnasium. The 
EMG was acquired from each participant with a 
sampling frequency of 1,950 Hz by using 
EMG100C Ultrium EMG high precision EMG 
signal collector (BIOPAC Systems, Inc., Goleta, 
CA, USA). All procedures were approved by the 
university Ethics Committee (Beijing, China). 
 
EMG signal data acquisition and processing 

The time-domain features of EMG include 
waveform, amplitude, frequency, phase, etc., 
which reflect the changing process and 
characteristics of muscle electrical activity [16]. 
The waveform length of EMG time-domain 
features was calculated below. 
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where WL was the waveform length. N was the 

number of samples. xi was the value of the i th 
sample. DAWV was the difference absolute 
mean value of signal. The calculation of muscle 
activity intensity was shown in equation (2). 
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where IEMG was the integration of absolute of 
EMG signal value. The muscle contraction point 
correlation was calculated as below. 
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where MAV was the mean absolute value of 
amplitude. MAVS was the mean absolute value 
slope of signal. The EMG average energy value 
and signal strength were calculated below. 
 

2

1

2

1

/

1

1

N

i

i

N

i

i

RMS x N

VAR x
N

=

=


=





=
 −




                                            (4) 

 
where RMS was the root mean square of EMG. 
VAR was the variance of signal. Meanwhile, zero 
crossing (ZC) was the number of times the EMG 
waveform changes at the zero point, which 
reflected the synchronization and stability of the 
muscle electrical activity. Wilson amplitude of 
signal (WAMP) was the difference between the 
maximum amplitude and the minimum 
amplitude of the signal, which was used to 
describe the degree of amplitude change of the 
signal, the larger the amplitude change, the 
larger the WAMP value. Simple square integral 
of signal (SSI) was the sum of the squared values 
of the signal over a period of time, which was 
used to describe the energy characteristics of the 
signal, the greater the energy, the greater the SSI 
value.  Slope-sign change (SSC)  was  the  number  
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Figure 1. EMG feature extraction method. 

 
 
of changes in the slope of the signal in the time 
domain, which was used to describe the rate of 
change of the signal [17, 18]. The frequency 
domain characteristics of the EMG were the 
characteristics of the signal in the frequency 
domain, and the peak frequency was calculated 
as shown in equation (5). 
 

1 2(max( , , , ))N
i

PF f p p p= K                                 (5) 

 
where PF was the peak frequency. pi was the 
power spectral intensity corresponding to the 

frequency if . The frequency domain features of 

EMG also included the mean frequency (MPF), 
total power (TP), median frequency (MDF), 
mean instantaneous frequency (MIF), and 
fatigue index based on spectral moment (FI). The 
non-Gaussian features of EMG referred to the 
fact that the electrical signals generated by 
muscle activity did not statistically conform to a 
Gaussian distribution, i.e., their probability 
density functions did not exhibit the typical bell 
curve shape, and its measurement parameters 
contained crag and negentropy [19, 20]. In order 
to analyze the characteristic changes of EMG in 
different fatigue stages, the study convened 
volunteers for EMG acquisition. The EMG 
feature extraction method was shown in Figure 
1. Since the acquisition of EMG signals was often 
subject to various interferences such as 

electromyographic noise and signal interference, 
the signals needed to be denoised before feature 
extraction and computation. In order to remove 
the high frequency and low frequency noise in 
the original EMG, band-pass filtering was 
selected for the study. In EMG signals, different 
parts of muscles produced different electrical 
signals during movement. Therefore, active 
segment extraction of the signals was needed to 
extract site-specific muscle activity information 
[21]. Common active segment extraction 
methods include threshold-based methods, 
frequency domain-based methods, etc., which 
can be selected according to different 
application scenarios. Power spectrum 
estimation is a method that transfers the signal 
energy to the frequency domain, which can 
extract the muscle activity information at 
different frequencies. Through power spectrum 
estimation, the frequency distribution of muscle 
activity can be more accurately understood [22]. 
Correlation feature calculation is a method to 
correlate multiple signals, which can extract the 
correlation information between different 
signals. Common correlation feature calculation 
methods include Pearson correlation coefficient, 
Spearman rank correlation coefficient, and so 
on. By correlation feature calculation, the 
relationship between different signals can be 
understood more accurately [23]. The EMG 
feature analysis method was shown in Figure 2. 
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Figure 2. EMG feature analysis method. 

 
 
EMG signature analysis methods can 
quantitatively and qualitatively analyze the 
characteristic information of EMG. Qualitative 
analysis is to analyze EMG signals by observing 
and judging the morphology, amplitude, 
frequency, and other features of EMG signals, 
which mainly relies on manual experience and 
polynomial fitting to judge the activity state of 
muscles such as muscle contraction, relaxation, 
fatigue, etc. by observing the waveform, 
amplitude, duration, and other features of EMG. 
Quantitative analysis is to analyze EMG through 
mathematical and statistical methods to obtain 
specific numerical results, which mainly relies on 
computers  and  related  software  to process and 
analyze EMG. The relationship between related 
features and fatigue level was analyzed by fitting 
the characteristic parameters of EMG signals 
such as mean, variance, power spectral density, 
etc. The effective segment of EMG was 
normalized as below. 
 

100%
I

I
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=                                                        (6) 

where I was the effective segment. FN was the 

total number of segments. I was the normalized 
effective segment. The feature parameter 
normalization was shown in equation (7). 
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Where F(i) was the i th eigenvalue. Fmax was the 
maximum eigenvalue. Fmin was the minimum 

eigenvalue. ( )F i was the normalized i th 

eigenvalue. The correlation between EMG 
features and fatigue changes was shown in 
equation (8). 
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where PF was the Pearson correlation 
coefficient. Its positive or negative indicated that  
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Figure 3. Multi input LVN model. 

  
 
the EMG features showed positive or negative 
correlation with fatigue. The sensitivity of the 
change of features with fatigue was calculated as 
shown in equation (9). 
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 where CFS was the feature fatigue sensitivity, 
whose larger value indicated that the feature 
was more actively affected by fatigue. SOF was 
the second order fitted eigenvalue. 
 
Model design for estimating fatigue muscle 
strength in athletes 

In electromyography-muscle force modelling, 
the Laguerre-Volterra network (LVN) was used to 
simulate the interactions between muscles and 
the nervous system [24]. Each node in the model 
represented a muscle fiber, and the connections 
between the nodes represented the 
coordination and regulatory relationships 
between the muscle fibers. By simulating 
synaptic transmission between neurons and 
force transmission between muscle fibers, the 
model could predict the relationship between 

EMG signals and muscle force. The single-input 
LVN model had some drawbacks in simulating 
the EMG-muscle force relationship including the 
inability to simulate multi-muscle coordinated 
movements and the inability to accurately 
simulate the non-linear properties and fatigue 
effects of muscles. Therefore, the study 
extended the LVN inputs. The multi-input LVN 
model was shown in Figure 3. 
 
The output of the input signal processed by the 
filter bank was the convolution of the input with 
the Laguerre function. The output of the filter 
bank was shown in equation (10). 
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where N was the number of input signals. l  was 

the number of Laguerre function ( )jnb m . T was 

the length of data points. M was the length of 

memory. The output of the multi-input LVN 
model ( )y t  was shown in equation (11). 
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where H was the number of the second layer 

outputs ( )hz t  of the multi-input LVN model. y0 

was the output of the single-output LVN model. 
The inputs of the single input LVN model were 
shown in equation (12). 
 

_1LVNx =                                                              (12) 

 

where _1LVNx  was the input to the single input 

LVN model.   was the mean EMG standard 
deviation. The input to the weighted fusion 
feature model was shown in equation (13). 
 

_LVN S feax W Fea=                                                (13) 

 

where _LVN Sx  was the input of the weighted 

fusion feature model. feaW was the feature 

weights. Fea was the fatigue feature matrix. The 
local sparse cost of the weighted fusion feature 
model was calculated below. 
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where _LVN SJ was the local sparsity cost. NMSE 

was the normalized mean square error. 
1

Q
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was the local sparsity penalty term.  was the 
penalty strength coefficient. Q and wi were the 
numbers of features and weights, respectively. 
 
In order to reduce the time of model training, the 
study guided the search direction of the 
continuous domain ant colony algorithm by 
updating the global optimal solution, so that it 
was more likely to find the global optimal 
solution. At the same time, the global update 
mechanism could also increase the diversity of 
the algorithm and avoid the ants from falling into 
the situation of local optimal solutions. The LVN 
feature-weighted local sparsity correction model 
(LVN-FS) training process included initializing the 
parameters and calculating all possible sampling 
values, initializing the continuous domain ant 
colony parameters and calculating the weights of 

the solution combinations, initializing the 
solution archive SOL by forwarding propagation 
and solving the LVN model determined by the 
combination, and then calculating the 
intermediate and estimated outputs of the LVN 
model. SOL was sorted in ascending order 
according to the cost function. In each iteration, 
the guide solution index was determined based 
on the probability and a new solution was 
generated based on the guide solution. Then 
forward propagation was performed and the 
intermediate and estimated outputs of the LVN 
model were calculated based on the LVN model 
determined from the new solution. The new 
solutions were ranked according to the cost 
function. The new and old solutions were 
combined and sorted in ascending order 
according to the cost function as a new SOL. A 
global update was performed to generate a 
uniform sampling value between 0 and 1. When 
it was less than 0.9, a new solution was 
constructed by using the solutions in the SOL in 
order as the guide solution. The first solution 
combination of the new SOL was used as the 
optimal solution combination for the current 
loop. The steps were repeated until the 
maximum number of iterations was reached. 
The solution combination parameters were 
shown as follows. 
 

1 2 0 1 2[ , , , , , , ]feay C W W W                                     (15) 

 
where β1 and β2 were the uniformly sampled 
values. C, W1, W2 were matrices with different 
number of rows and same number of columns, 
respectively.  
 
The fatigue muscle strength estimation model 
for athletes based on the LVN-FS model was 
shown in Figure 4. The process of the fatigue 
muscle strength estimation model for athletes 
included the following steps. Firstly, the EMG 
signal data of athletes were acquired by EMG 
signal acquisition equipment. Then, the acquired 
data were preprocessed including filtering, noise 
reduction, and other operations. The features 
were extracted from the preprocessed data such  
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Figure 4. A fatigue muscle strength estimation model for athletes based on LVN-FS model. 

 
 
as time-domain features, frequency-domain 
features, etc. followed by normalization of the 
extracted features to eliminate the differences 
between different athletes. Then, correlation 
analysis was carried out to find out the features 
related to fatigue muscle strength. Finally, 
fatigue muscle strength estimation was carried 
out by using the LVN-FS model, which could be 
used to achieve accurate estimation of fatigue 
muscle strength of athletes through feature 
selection and classifier training. In the 
construction process of the athlete fatigue 
muscle strength estimation model, the main 
data used was the athlete's electromyographic 
signal data, which was collected through 
electromyographic signal acquisition equipment. 
 
Validation of constructed fatigue muscle 
strength estimation model 
In the process of validating the model, other 
types of data were also used such as 
physiological indicators of athletes including 
heart rate, blood pressure, etc., and exercise 
performance data such as speed, strength, etc. 
Those data could help verify the accuracy and 
effectiveness of the model. At the same time, to 
ensure the generalization ability of the model, 
electromyographic signal data from different 
athletes, different sports events, and different 
training states were used for model validation. 
The experiments were carried out by using 

graphic processors (GPUs) and CPU processors 
with strong computational power to accelerate 
the training and inference process of the model. 
The Python programming language 
(https://www.python.org/) was mainly used and 
combined with deep learning frameworks, 
TensorFlow (https://www.tensorflow.org/) and 
PyTorch (https://pytorch.org/), for 
implementation. In addition, to better handle 
large-scale datasets, distributed computing, data 
parallelism, and other techniques were also used 
in the experimental process. Some common data 
processing and visualization libraries including 
NumPy (https://numpy.org/) and Pandas 
(https://pandas.pydata.org/) were also used in 
the specific implementation in order to pre-
process and analyze the data. To verify the 
effectiveness of the LVN-FS model proposed in 
the study, the classical polynomial fitting model 
(POL) and the Laguerre (LET) model were 
experimentally used as comparison methods. 
 
 

Results and discussion 
 

EMG signal data acquisition and processing 
The EMG signal acquisition from volunteer #1 
was shown in Figure 5. Within the first 25 
seconds, the maximum voluntary contraction 
force of the muscle force occurred, which 
indicated  that  the  muscle  was  in  a  more  tense 

https://www.python.org/
https://www.tensorflow.org/
https://pytorch.org/
https://numpy.org/
https://pandas.pydata.org/
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Figure 5. The collection of electromyographic signals from volunteer 1. 
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Figure 6. Preprocessing results of EMG. 

 
 
state. Then, the size of the muscle force 
gradually changed to 70% of the maximum 
voluntary contraction force, which indicated that 
the muscle had started fatigue. After 260 
seconds, the EMG showed obvious fluctuation, 
which indicated that the athlete's muscle force 
had gradually transitioned from a non-fatigue 
state to a fatigue state, and at the same time, the 
movement noise gradually increased. The results 
suggested that the pre-processing of EMG was 

very necessary to ensure the acquisition of 
accurate and reliable EMG signal data. The pre-
processing results of EMG were shown in Figure 
6. The baseline drift of the EMG signal was 
effectively suppressed after data preprocessing, 
which could be achieved by an effective filtering 
technique. After 50 - 300 Hz bandpass filtering, 
the low and high frequency components of the 
EMG signal were effectively removed, resulting 
in a clearer and more accurate signal. The series 
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Figure 7. Evaluation results of partial time-domain features. MT and MF denote the measured calculated values and fitted curves of IEMG for 
male athletes, and FT and FF denote the measured calculated values and fitted curves of IEMG for female athletes, respectively. M1-4 represented 
the trend of IEMG test for four male athletes, and F1-4 represented the fitted curves of IEMG for four female athletes, respectively. 
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Figure 8. The correlation analysis results between different characteristic parameters of EMG and fatigue degree. 

 
 
of preprocessing steps provided a more reliable 
and accurate data foundation for the 
subsequent analysis and interpretation of the 
EMG signal. The evaluation results of the time-
domain feature IEMG were shown in Figure 7. 
The time-domain feature IEMG showed a 
monotonically increasing trend with the increase 
of fatigue (Figure 7a). Meanwhile, the time-
domain features RMS, MAV, and WL had similar 
properties. The curves of the time-domain 
feature IEMG demonstrated a high degree of 
overlap and monotonicity consistent with the 

fitting effect in Figure 7a (Figure 7b). The 
monotonicity and stability of different 
characteristic parameters of EMG could be 
analyzed according to the same process 
described above. The results of the correlation 
analysis between different characteristic 
parameters of EMG and fatigue level were 
shown in Figure 8. The time-domain 
characteristic parameters of IEMG, MAV, RMS, 
WL, and VAR showed high positive correlations 
with the fatigue level with correlation 
coefficients  of  0.876,  0.901,  0.908,  0.911,  and 
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Figure 9. Test results of different models on the full pulse data of the radial muscle in volunteers.  

 
 
0.898, respectively, which suggested that these 
time-domain characteristic parameters 
increased with the fatigue level, possibly 
reflecting the cumulative energy of the muscular 
activity and the activation of the muscles. The 
frequency domain parameters of MPF and MDF 
showed high negative correlation with the 
fatigue level with correlation coefficients of -
0.766 and -0.663, respectively, which implied 
that the values of MPF and MDF decreased with 
the increase of fatigue level. The decreases of 
MPF that stood for the main frequency of the 
EMG signals and MDF that stood for the maximal 
power frequency might reflect the changes of 
the frequency distribution of EMG signals 
induced by muscle fatigue. The time-domain 
feature parameters showed a positive 
correlation with the degree of fatigue, whereas 
the frequency-domain feature parameters 
showed a negative correlation with the degree 
of fatigue. The analysis of these parameters 
could provide a quantitative indicator of the 
state of muscle fatigue, which was useful for 
assessing the degree of muscle fatigue and 
monitoring exercise performance. 
 

Analysis of the application of models for 
estimating fatigue muscle strength in athletes 
The test results of the different models on the 
full pulse data of the radial muscle of volunteers 
were shown in Figure 9. The error NMSE of the 
LVN-FS model was in the range of 1 - 4%, which 
was approximately 5% lower than that of the 
POL and LET models. The fitness of the LVN-FS 
model was in the range of 80 - 90%, which was 
approximately 21% improved compared to the 
POL and LET models. The results showed that the 
LVN-FS model had a significant improvement in 
both error and fitness with respect to the POL 
and LET models, which made it fitting the actual 
observed data more accurately and with a higher 
degree of fitting. The test results of different 
models in the fatigue stage were shown in Figure 
10. For the prediction of muscle strength for 
different fatigue levels, the error of the LVN-FS 
model was in the range of 2 - 6%, which was 
smaller than that of the POL and LET models, and 
the degree of fit of the LVN-FS model was in the 
range of 70 - 90%, which was greater than that 
of both the POL and LET models. Therefore, the 
LVN-FS  model  was  a  better  and  more  reliable  
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Figure 10. Test results of different models during fatigue stage. 
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Figure 11. Muscle strength estimation using different models. 

 
 
and valid model choice. The experimental results 
of different models for muscle force estimation 
were shown in Figure 11. The LVN-FS model's 
estimation of fatigue muscle force was closer to 
the real muscle force data than that of the POL 

and LET models. The results confirmed that the 
LVN-FS model had higher accuracy and reliability 
in estimating muscle force and was able to better 
capture the trend of fatigue muscle force and 
provide estimates closer to the real situation. 
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Conclusion 
 

The study proposed a fatigue muscle force 
estimation model for athletes based on LVN-FS 
by input expansion and feature fusion on the 
basis of LVN model and combined feature 
selection and classifier training to achieve the 
estimation of fatigue muscle force of athletes. 
The results showed that the fatigue muscle 
strength estimation model for athletes based on 
the LVN-FS model had high accuracy and 
reliability and could more accurately fit the 
actual observed data with a higher degree of 
fitness. The model provided quantitative 
indicators for assessing athletes' fatigue status 
and monitoring sports performance, which could 
help to improve athletes' training effect and 
sports performance. This study only analyzed the 
EMG signals of the radial muscles of the athletes 
and did not consider the EMG signals of other 
muscles. Future studies could consider 
combining EMG signals from other muscles to 
improve the generalizability of the model. 
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