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With the increase of age, the physical function of the elderly gradually declines, and various chronic diseases such 
as hypertension and coronary heart disease also increase correspondingly. Hypertension is one of the most 
common health problems in the elderly. It not only affects the quality of life of the elderly, but also may lead to a 
series of serious complications. Therefore, real-time monitoring and effective prediction of blood pressure in the 
elderly is particularly important. To address this issue, this study developed a smart wearable health monitoring 

device based on time series prediction of multiple physiological parameters for the elderly, which employed 
sensors and Ethernet for real-time monitoring and recording of physiological parameters. The data was then 
analyzed through a long and short-term memory (LSTM) network to predict future trends of each parameter. The 

gadget demonstrated an average inaccuracy of 3 mmHg for systolic blood pressure and 4 mmHg for diastolic blood 
pressure taken in a relaxed state during basic functional accuracy testing. Under cognitive pressure, the diastolic 
and systolic blood pressure averages had an error rate of 3 mmHg and 2 mmHg, respectively. The average error 
between the heart rate measured by the health monitoring equipment and the real heart rate of the subjects was 
4 bpm. Under cognitive stress, the average error between the measured heart rate and the subjects' real heart 
rate was 8 bpm. Under different pressure conditions, the difference between the blood oxygen saturation 
measured by the health monitoring equipment and the real value of the subjects was less than 1%. In the time 

series prediction test, the LSTM network-based prediction model converged at 168 iterations. By analyzing 
historical data, this model could accurately predict future trends of each physiological parameter. The model's 
convergence speed was better than the comparison model. In the training set, the study's proposed time-series 
prediction model achieved an average accuracy of 94.23% in predicting blood pressure values. Similarly, the 
average accuracy of the time-series prediction model proposed by the study was 91.61% in the test set. Notably, 
the accuracy outperformed comparison algorithms in both the training and test sets. Therefore, the health 
monitoring device proposed by the study exhibited potential for practical applications. 
 
 
Keywords: aging; health monitoring; blood pressure; heart rate; blood oxygen saturation; prediction; long and short-term memory networks. 
 
*Corresponding author: Yanqun Wen, School of Art and Design, Sanming University, Sanming 365004, Fujian, China. Email: 
wenyanqun2011@163.com.  

 

 

 

Introduction 
 
With the increasing size of the global elderly 
population, the health of older persons has 
become a major challenge for the global society. 

With the gradual decline of physiological function 
in old age, the elderly are more vulnerable to 
chronic diseases, sudden health problems, and 
reduced quality of life [1, 2]. Health monitoring 
and timely interventions for older people are 
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therefore essential to ensure that they enjoy 
their right to a healthy, active, and autonomous 
life.  
 
Long short-term memory (LSTM) is widely used in 
different fields due to its ability to deal with long-
term dependence problems well and its high 
scalability [3, 4]. Kesiman et al. developed an 
application capable of automatically 
transliterating Balinese palm leaf manuscripts 
into Roman letters and applied the LSTM model 
to the application [5]. To improve the operation 
quality of road network traffic and promote the 
sustainable development of urban road network 
planning, Mao et al. proposed a model based on 
PSO-LSTM to predict road traffic speed and 
overall dynamic time series, which could 
effectively predict road conditions in different 
regions [6]. Wei et al. proposed a wind speed 
prediction model based on LSTM, which could 
predict the wind speed in a specific time in the 
future according to the historical wind speed 
records of different regions and weather 
conditions [7]. Kim et al. proposed a time series 
prediction model based on LSTM. The 
experimental results showed that this model 
could accurately predict stock trends and 
weather conditions, and its prediction accuracy 
was better than the existing model [8]. Friedrich 
et al. used environmental sensors to monitor the 
health status of the target population and 
evaluated the monitoring results with real data 
sets. The results showed that the average data of 
motion sensor events had a great correlation 
with the standardized geriatric physical fitness 
evaluation criteria [9]. Santhanaraj et al. studied 
an auxiliary robot and system for elderly care, 
which could effectively help to improve the effect 
of existing elderly care auxiliary work [10]. Guo et 
al. designed a walking stick driven by ultra-low 
frequency human motion, which could help 
people with motor impairment including the 
elderly to improve their quality of life [11]. 
However, all those current technologies have 
different issues in data accuracy and reliability, 
privacy and security, user acceptance and usage 
habits, and medical regulation and 
standardization.  

Health monitoring (HM) for the elderly needs to 
be not only real-time but more importantly 
predictive. To improve the effectiveness, 
timeliness, foresight, and convenience of health 
monitoring for the elderly, this study proposed a 
smart wearable health monitoring device for the 
elderly based on multi-physiological parameter 
time series prediction using LSTM to predict the 
relevant physiological parameter (P-P) and 
applied it to smart wearable devices. The device 
would help to improve the accurate judgment of 
the current health status of the elderly and the 
assessment of the future health status of the 
elderly to help the medical staff to intervene in 
advance and improve the quality of life of the 
elderly. The research not only promoted the 
innovation and development of health 
monitoring technology, but also provided new 
perspectives and methods for health 
management, disease prevention and medical 
research. 
 
 

Materials and methods 
 

 
Smart wearable health monitoring device 
architecture for the elderly 
In the process of developing this smart wearable 
health monitoring device for the elderly, both 
knowledge and technology from multiple fields 
such as hardware design, software development, 
and data science were combined. The design and 
development of the equipment was not only 
based on formula calculations, but also on actual 
data collection, analysis, and model training. The 
hardware part mainly included wristband 
measuring terminal (Pro-720 smart health 
monitoring bracelet) (HealthTech Innovations 
Ltd., Shenzhen, Guangdong, China) and wireless 
sensor network (Smart Link WSN-500) (Smart 
Link Communications Inc., Shanghai, China). The 
design of the bracelet measuring terminal 
considered the habits and physiological 
characteristics of the elderly, ensuring that it 
could be comfortably worn on the wrist, and real-
time and accurate monitoring of physiological 
parameters such as blood pressure, blood oxygen  
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Figure 1. Framework diagram of intelligent wearable health monitoring equipment for the elderly. 

 
 
saturation, and heart rate. The wireless sensor 
network was responsible for transmitting the 
data collected by the bracelet to the server and 
the monitoring center. The software part mainly 
involved the reception, processing, analysis, and 
visualization of data. A set of software specifically 
for processing physiological parameter data was 
developed to decode, store, and analyze the 
received data, and display and visualize it in real 
time in the monitoring center. During 
development, a large amount of data was used to 
train and validate the LSTM model to make 
predictions about physiological parameters of 
the elderly. Some of these data were collected 
from previous studies or publicly available 
databases, while others were collected through 
actual experiments. Blood pressure, oxygen 
saturation, and heart rate data were collected in 
a laboratory setting for 200 subjects between the 
ages of 60 and 80. This data was not only used to 
verify that the underlying function of the device 
was normal, but also to train and validate the 
LSTM model to improve the accuracy of the 
prediction. Each P-P was sent to the wireless 
sensor network through RF technology and was 
uploaded to the server and monitoring center 
through the coordinator in the wireless sensor 
network [12, 13]. The framework diagram of the 
smart wearable HM device for the elderly was 
shown in Figure 1. The real-time P-P monitored 
by the bracelet terminal was converted to a 
digital signal through the microprocessor built 
into the bracelet and an analog-to-digital 
converter, and sent to the wireless sensor 
network, and subsequently sent to the Dell 
PowerEdge R240 server (Dell (China) Co. Ltd., 

Beijing, China) using the ZigBee protocol (ZigBee) 
technology, which was a bi-directional wireless 
communication protocol with the advantages of 
low energy consumption and low data rate. 
Blood pressure, oxygen saturation, and heart 
rate were important P-P to determine the health 
status of the elderly. Measurement of blood 
pressure was generally done by direct and 
indirect methods, but direct measurement 
required invasive examination in hospitals or 
other specialized institutions, so it did not apply 
to this study. In this study, indirect measurement 
was used to collect blood pressure data from the 
wearers using pulse wave transit time (PWTT) 
and pulse wave velocity (PWV) methods [8, 14]. 
Equation (1) illustrated the link between the two 
methods and the blood pressure readings. 
 

0

BPL hE hE e
PWV

PWTT d d



 
= = =               (1) 

 
where L  was the length of the artery. h  was the 

thickness of the artery.   was the density of the 
blood. BP  was the blood pressure. d  was the 

diameter of the artery.   was the vascular 

parameter. 0E  was the elastic modulus at zero 

arterial pressure. As all other things being equal, 
when blood pressure increased, PWV rose, and 
conduction time decreased. The relationship 
between blood pressure and pulse conduction 
time was shown in equation (2). 
 
BP a PWTT b=  +                                               (2) 
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where a and b  were constants specific to the 

measurement object. The oximeter integrated 
within the bracelet allowed for the measurement 
of blood oxygen saturation. The oximeter 
emitted light of a specific wavelength. The 
oxygen saturation in the blood vessels was 
calculated using the different absorption 
responses of deoxyhemoglobin and 
oxyhemoglobin to specific wavelengths in 
equation (3). 
 

0 exp( )I I cL= −                                                    (3) 

 

where 0I  was the light intensity of the incident 

light and I  was the light intensity of the 
reflected light.   was the absorption coefficient 
of the medium for the light. c  was the 
concentration of the medium. L  was the 
thickness of the medium. Since the pulse wave 
could reflect the beating frequency of the pulse, 
and at the same time, the beating frequency of 
the pulse was the same as the heart rate, the 
heart rate data could be obtained at the same 
time as the blood oxygen saturation of the 
wearer was measured [15, 16]. The wireless 
sensor network's tree network topology was 
depicted in Figure 2. 
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Figure 2. Tree topology of wireless sensor networks.  

The wireless sensor network contained a 
coordinator, a variable number of routers, and 
terminals. The terminals could be sub-devices of 
either the router or the coordinator, but the end-
devices had no sub-devices. The main function of 
the coordinator was to establish and maintain 
the network, and the main function of the router 
was P-P transit and routing. All data collected by 
the end devices would be transmitted to the 
coordinator, which uploaded it to the server via 
Ethernet. The server in the system mainly 
received the data frames sent by the coordinator 
and then decoded the data frames subsequently 
to obtain the P-P of the wearer and then stored 
each P-P into the database. The P-Ps were 
summarized and displayed in the monitoring 
center. The monitoring center consisted of 
software and hardware facilities. The software 
facility was mainly responsible for entering the 
wearer's information, binding the terminal 
device, monitoring the wearer's P-P in real time, 
and visualizing the P-P. The system set a 
threshold value for each P-P, and when a P-P 
exceeded the set threshold value, it would trigger 
a danger alert, which was convenient for the 
wearer or medical personnel to know the 
wearer's physical condition in time. 

 
Predictive approach to multiple physiological 
parameters in the elderly 
Time series forecasting is the forecasting of data 
related to time changes that are processed and 
analyzed. In HM systems, time series forecasting 
is done by modeling the historical data of P-P to 
predict the future trend of P-P. Depending on the 
forecast's step size, time series can be divided 
into single-step and multi-step forecasting 
categories [17]. The single-step forecasting, 
which involved using the subsequence in the 
known time period to predict the value of the 
sequence in the subsequent step, was expressed 
in Equation (4). 
 

1 1( ... )t t t Tx f x x
 

+ − +=                                                        (4) 
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Figure 3. LSTM network structure diagram. 

 
 

where 
1tx



+
 was the predicted value at the 

moment of ( 1)t + . ( )f   was the relationship 

between the historical values of the time series 
and the future observations. Multi-step 
forecasting is generally applied to output by 
recursive forecasting or direct forecasting. 
Recursive prediction is output by minimizing the 
error of single-step prediction, and the result of 
single-step prediction is recursively used as 
model input, which in turn leads to the next 
multi-step prediction value. The recursive multi-
step prediction expression was shown in 
equation (5). 
 

,...,

1 1 1

1

( ), 1

( ,..., , ,..., ),1

( ,..., ),

N xN T Z

N k N k N N N T

N k N k T

f x k

x f x x x x k T

f x x k T



− +

   

+ + − + − +

  

+ − + −


=


=  

 


 (5) 

 

where  1 2, ,...,N N N Kx x x
  

+ + +  was the output 

value of the model, i.e., the observations after k  

time steps that the model could predict. The 
single-step prediction method has a smaller error 
value compared to the multi-step prediction, so 
this study adopted the single-step prediction 
method for the elderly multi-P-P time series 
prediction. LSTM can lessen the issue of the 
recurrent neural network (RNN)'s long-term 
dependence and improve its long-term time 
series prediction performance. LSTM updates the 
recording time sequence of the cellular structure 
by the summation calculation, thus avoiding the 
large influence of the data of the previous state 
on this state data and retaining the time 
sequence of the cellular structure to avoid the 
large influence of the data of the previous state 
on this state data. Thus, it avoids the situation 
that the data of the previous state has a large 
influence on the data of this state and preserves 
the characteristics of the time step (Figure 3) [18, 
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19]. At moment t, the input layer input was ( )x t

. ( 1)h t −  was the hidden layer at moment 1t − , 

and the internal state s  was the secret key for 
neuron activation and determined the network 

structure of the LSTM. A value ( )f t  between 0 

and 1 was output through ( 1)h t −  and ( )x t  in 

the internal state, representing a trade-off for 
fully retaining or discarding the state. The 
activation function was a sigmoid function. 
Equation (6) displayed the input gate equation. 
 

( )1t i t i t ii W x U out b −= • + • +                          (6) 

 

where the input gate was represented by ti . The 

information stored in the cell storing ( 1)h t −  

and ( )x t  were represented by iW  and iU , 

respectively. The weight and bias of the input 
gate were represented by A. The output gate 
equation was shown below. 
 

( )1t o t o t oo W x U out b −= • + • +                           (7) 

 

where tX  denoted the output data and ( 1)h t −  

denoted the state at the previous moment. 
Typically, the output gate was determined by 

multiplying the memory cell state ( )s t  result by 

the tanh activation function by a portion of the 
( 1)h t −  and ( )x t  result by the sigmoid 

activation function. The equation for the 
forgetting gate was shown in equation (8). 
 

( )1t f t f t ff W x U out b −= • + • +                     (8) 

 

where ( )f t  was the forgetting gate's output with 

fW  and fU  indicating the weight and bias of the 

forgetting gate, and oW  and oU  signifying the 

weight and bias of the output gate. The LSTM 
training algorithm utilized a backpropagation 
process, beginning with a forward propagation to 
obtain the neuron output value before 
subsequently calculating the value of the error in 
reverse. From there, the error function 
computed the partial derivatives of the neuron's 

weighted inputs via an equation, and the error 
equation was passed in a forward propagation to 
the previous state, which was expressed in 
Equation (9). 
 

1

0 , , , ,
t

T T TT

k j oh f fh i j ih s j sh

j k

W W W W    
−

−

= + + +      (9) 

 

where xyW  was the weight from cell x  to cell y

. ,f J  was the error of the J th cell at moment 

f . ,i J  was the error of the J th cell at moment 

i . ,s J  was the error of the J th cell at moment 

s . The J  error equation that propagated the 

error up one level was shown in equation (10). 
 

, , , ,1
( ) '( 1)T T T T l

o t ox f t fx i t ix s t sx tl

t

E
W W W W of net

net
    −

−


= + + +

     (10) 

 

where xyW  was the weight from cell x  to 

equation cell y . ,f t  was the error of the t th 

cell at the f th moment. ,i t  was the error of the 

t th cell at the i th moment. ,s t  was the error of 

the t th unit at the s th moment. Recurrent 
convolutional neural network is a network model 
to deal with time-series data classification and 
regression problems after RNN. Its training speed 
is faster, and it can accurately control the 
dependencies in the time series. The three 
components of a recurrent convolutional neural 
network are the residual connection, the 
expansion convolution, and the causal 
convolution (Figure 4). The causal convolution is 
a unidirectional structure mainly used for 
processing temporal features. Equation (11) 
illustrated the causal convolution equation at 

point tX  in the current layer. The data of this 

layer was related to the values of the subsequent 
layer and its predecessors, but not to other 
moments of the present layer. 
 

( )
1

*
K

t k t K k

k

F X x f x − +

=

=                                       (11) 
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Figure 4. Recurrent convolutional neural network structure diagram. 

 
 
where X  was the sequence and F  was the 
filter. The notion of expansion convolution was 
presented, and it was distinguished by the 
capacity to do interval time sampling, as causal 
convolution was restricted by the issue of the 
convolution kernel's size. The higher the interval 
d  of the higher layer could make the 

convolution to expand the sensory field. The 
expansion convolution equation with expansion 

factor d  at tx  was shown in equation (12). 

 

( ) ( )
1

*
K

t k t K d d
k

F X x f x
− −

=

=                                         (12) 

 
where X  was the sequence. F  was the filter. d  

was the layer spacing. The residual connection 
could transfer information across the hidden 
layers and improve the problem of model 
accuracy degradation in deep learning. Over 
some time, the time series curve fluctuated, so 
before modeling the time series, it was necessary 
to test the smoothness of the time series. The 
study used the autocorrelation coefficient to 
analyze the relationship between the current 
time series monitoring values and the historical 
monitoring values. The expression of the 
autocorrelation coefficient was shown in 
equation (13). 
 

( , )

( )

t t T
T

t

Cov X X

Var X
 −=                                               (13) 

 

where tX  was a subsequence of the time series 

corresponding to moment t . t TX −  was a 

subsequence of the time series at moment t T−

. ( )tVar X  was the variance of tX . 

( , )t t TCov X X −  was the self-covariance of tX  

and t TX − . The equation for the variance was 

then shown in equation (14). 
 

2

1
( ) ( )

T i
tt ti

Var X X X
=

= −                                  (14) 

 

where tX  was the mean value of tX . The 

equation for the self-covariance was as follows. 
 

1
( , ) ( )( )

T i i
t t Tt t T t t Ti

Cov X X X X X X −− −=
= − − (15) 

 

where t TX −  was the mean value of t TX − . The 

user of the monitoring results judged the 
relationship between the data based on his/her 
own experience regarding the autocorrelation 
coefficient results to specify the appropriate 
monitoring strategy. The network of LSTM 
applied to multi-P-P time series prediction was 
shown in Figure 5. The LSTM network structure 
contained two layers with a cell count of 256, 
Layer L1 and Layer L2, and a fully connected layer 
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D1. The time steps were input into L1 in the order 

of 1 2 1, ... ,t tx x x x−  with 
(1)

1th −  denoting the 

output of the 1t −  time step of Layer L1. 

Subsequently, the output values of the L1 layer 
were input into the L2 layer for the same 
operation as L1. To simplify the model, only the 

hidden layer output 
(2)

Th  of the L2 layer was 

returned. Finally, multiple P-P predictions of 
independent time steps were output by 
connecting to the fully connected layer D1 of 3 
neurons.  
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Figure 5. Schematic diagram of LSTM application in multiple 
physiological parameter time series prediction. 

 
 
Testing of developed device 
The basic and predictive features of this HM 
device were tested on a desktop computer with 
Inter(R) CoreTM i5-13400U, operating system 
Windows 10, and 8 G of RAM. The study collected 
blood pressure, oxygen saturation, and heart rate 
data from 200 subjects in different physical 
states in a laboratory setting using Yuyue 
YE660AR arm-type electronic 
sphygmomanometer for blood pressure and 
heart rate and Omron HPO-100 oximeter for 
oxygen saturation, which was considered to be 
the genuine oxygen saturation. The subjects 
were 100 men and 100 women, aged 60-80 years 
old. Elderly people with relatively good health 
and able to cooperate with the experimental task 

were selected. All participants had no serious 
chronic diseases or disabilities and were able to 
maintain a stable physical state during the 
experiment. In addition, to ensure the reliability 
and validity of the data, participants who had 
severe cognitive impairments or were unable to 
properly understand and perform the 
requirements of the experiment were excluded. 
The procedures of this study were approved by 
the National Health Research Ethics Board for the 
use of human subjects/data. A consent form was 
signed by all participants before formally 
participating in the experiment. The study 
achieved different mental stress states by putting 
the experimental subjects in different 
environments. The relaxation state was achieved 
by allowing subjects to listen to music. The 
physical stress state was achieved by letting the 
subjects walk or jog. The emotional stress was 
achieved by letting the subjects watch movies 
with high emotional fluctuations. The cognitive 
stress was achieved by having the subjects read 
academic articles. All data was collected in a 20-
minute duration. 

 
 

Results and discussion 
 

Basic functional accuracy testing 
The blood pressure values measured with the 
different devices in a relaxed state showed that 
the average error between the diastolic blood 
pressure measured by the proposed HM device 
of this study and the true diastolic blood pressure 
value measured by the Yuyue YE660AR arm-type 
electronic sphygmomanometer was 4 mmHg, 
while the average error value of systolic blood 
pressure was 3 mmHg (Figure 6a). The average 
error between the diastolic blood pressure 
measured by HM and the real diastolic blood 
pressure value of the subjects in a cognitive 
stress state was 3 mmHg, while the average error 
of systolic blood pressure was 2 mmHg (Figure 
6b). The error values in both relaxed and 
cognitive stress states satisfied the criteria of 
Association for the Advancement of Medical 
Instrumentation (AAMI) for the practical 
application.  The results indicated that the blood 
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Figure 6. Comparison of blood pressure values.  
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Figure 7. Comparison of heart rate values. 

 
 
pressure values measured by the designed HM 
devices had a reference value. The average error 
of the heart rate between the HM device and the 
true heart rate of the subjects was 4 bpm under 
relaxed state (Figure 7a), while the average error 
of heart rate in cognitive stress state between the 
HM and the subject's true heart rate was 8 bpm 
(Figure 7b). The error value was lower in the 
relaxed state than that in cognitive stress state, 
which indicated that the heart rate measured by 
the HM device had a reference value. The blood 
oxygen saturation data measured in the relaxed 
state showed that the average error between the 
HM devices and the true values was 0.3% (Figure 

8a), while, under body pressure, the average 
error between the HM and the true values was 
0.8% (Figure 8b). The blood oxygen saturation 
data measured by different devices during the 
emotional stress state were shown in Figure 8c. 
The mean error between the oxygen saturation 
values measured by the HM device and the true 
values was 0.4%. The blood oxygen saturation 
data obtained from several devices during a 
cognitively stressed state was shown in Figure 8d. 
The oxygen saturation values measured by the 
HM device had a mean inaccuracy of 0.5% 
compared to the true values. The results showed 
less   than   1%   separation   among   the   genuine 
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Figure 8. Comparison results of blood oxygen saturation values. 

 
 
values of the participants under various stress 
conditions from the oxygen saturation values 
measured by the HM device, suggesting that the 
oxygen saturation recorded by the designed HM 
device had a reference value. 
 
Time series forecasting functionality testing 
The convergence performance of the prediction 
model developed in this study was compared to 
prediction models based on recurrent neural 
networks (RNN) and convolutional neural 
networks (CNN). The temporal prediction model 
based on LSTM, RNN, and CNN converged when 
the number of iterations reached 168, 235, and 
326, respectively (Figure 9a). The time-series 
prediction model based on LSTM, RNN, and CNN 
completed convergence when the number of 
iterations reaches 251, 300, and 385, respectively 
(Figure 9b). A comparison of the blood pressure 

value prediction models' accuracy using various 
methods in the training dataset and test set was 
shown in Figure 10. Based on the calculations, 
the average accuracy of the temporal prediction 
model based on LSTM, RNN, and CNN were 
94.23%, 89.51%, and 85.59%, respectively in 
training data set (Figure 10a). It was evident that 
the LSTM-based temporal prediction model 
exhibited strong stability in the measurement of 
blood pressure values, and its accuracy grew as 
the number of experimental subjects increased. 
The average accuracy of the temporal prediction 
model based on LSTM, RNN, and CNN in the test 
data set were 91.61%, 85.62%, and 82.13%, 
respectively (Figure 10b). In both the training and 
test sets, the suggested LSTM-based temporal 
prediction model for blood pressure prediction 
demonstrated a greater average accuracy than 
the  comparison  models.  The  study  chose  mean 
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Figure 9. Comparison of convergence performance of different algorithms in different datasets. 
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(b) Comparison of accuracy of blood 

pressure values in the test set
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Figure 10. Comparison of time series prediction accuracy of blood pressure values. 

 
 
Table 1. The mean value of performance indicators of different evaluation methods.  

 

Performance evaluation index LSTM RNN CNN 

MRE 8.56% 10.23% 15.68% 
MSE 9.15% 13.33% 16.75% 

MAE 8.68% 11.32% 14.26% 
RMSE 0.1947 0.3869 0.5391 

 
 
square error (MSE), root mean square error 
(RMSE), mean absolute error (MAE), and mean 
square error (MRE) as the evaluation metrics for 
various prediction models in order to guarantee 
the test's accuracy. The results showed that the 
LSTM model outperformed other models in 

terms of evaluation metrics with MRE, MSE, 
MAE, and RMSE as 8.56%, 9.15%, 8.68%, and 
0.1947, respectively (Table 1), indicating its 
superior performance. These results showed that 
the time series prediction model based on LSTM 
had good predictive power. 
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Conclusion 
 
Addressing issues with non-portable HM devices 
for the elderly and the unpredictability of P-P in 
this population, this study developed a smart 
wearable HM device based on MPPTSP. The 
device was subject to a basic accuracy test, 
resulting in an average error of 4 bpm between 
measured and true heart rate in a relaxed state. 
The average error for heart rate measurements 
under cognitive stress was 8 bpm. The LSTM 
model achieved an MRE of 8.56%, MSE of 9.15%, 
MAE of 8.68%, and RMSE of 0.1947 during 
evaluation. The results revealed that the HM 
device, which took MPPTSP into account, had a 
strong detection ability and could report the 
wearer's health in real-time. Additionally, the 
comparative analysis demonstrated the utility of 
the Institute's HM device for the elderly, which 
could be attributed to the familiarity of 
commonly used devices in the market. However, 
this study did not measure the P-P movement, 
which also resulted in increased requirements for 
the device's monitoring environment. Therefore, 
future research should aim to enhance the 
device's intelligent detection ability by 
incorporating movement detection technology, 
which will provide real-time HM to elderly 
individuals while in motion and contribute to 
their overall wellbeing. 
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