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Agricultural mechanization is a core part of the development of modern agriculture and involves the use of various 

mechanized tools and systems to automate traditional agricultural processes, thereby improving production 
efficiency, reducing labor costs, and increasing crop yields. Mechanized operations include land consolidation, 
sowing, fertilization, plant protection, harvesting, and other links. Among them, harvesting is a particularly critical 
link because it is directly related to the rate of crop loss and harvest quality. With the progress of technology, 
automated and intelligent harvesting robots have become an important development direction of agricultural 
mechanization. The route selection method of corn harvester based on the improved ant colony algorithm was 
proposed in this study to achieve the accurate route selection and planning of corn harvester and the 
improvement of the quality and efficiency of corn harvest. By applying the mobile robot dynamic path planning 
method based on the improved ant colony algorithm, target point adaptive heuristic function was used to improve 
the convergence speed of the algorithm. Particle swarm optimization was used to optimize the important 
parameters of the improved ant colony algorithm, and the dynamic path planning of mobile robot based on 
improved ant colony algorithm was realized. The color characteristics of visual navigation image were analyzed 
to remove the shadow interference, and the method of cumulative hop G component was used to determine the 
candidate point. In the area of interest, the candidate point was searched in the G component vertical 
accumulative value after removing shadow interference. The variance of the candidate points with good 
convergence in the semi-part of the image was calculated to determine the known point. The Hough transform of 
the known point was used to fit the navigation line of the boundary of the corn column. The continuous mutation 
of the R component was judged for whether the harvester reached the end of the field to realize the accurate 
selection of the navigation route of the corn harvester. The proposed method could accurately detect the image 

of the boundary line of corn. The harvested land was detected on the left side while the right harvest was not 
harvested with the accuracy of 99.2%. The average processing time per frame was 50.13 ms. The field end image 
could also be detected accurately. The shadow of the corn column did not affect the detection of the navigation 
line. The proposed method had a certain anti-interference to the overlapping of the middle and low level rice 
leaves. The proposed method could effectively segment the ratooning rice plants and path. The navigation path 
in the low layer under the complex background was extracted for the ratooning rice plant, which could effectively 
remove the corn column shadow interference and quickly detect the navigation line of the corn harvest and the 

field end. It has high anti- interference and operational efficiency on the overlapping of middle and low layer rice 
leaves. 
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Introduction 
 
With the continuous increase of the global 
population and the growing demand for 
agricultural production, the development of 
modern agriculture is faced with multiple 
challenges such as low production efficiency, 
high labor cost, and insufficient resource 
utilization efficiency [1]. In this context, 
agricultural mechanization is widely regarded as 
a key means to improve the efficiency and quality 
of agricultural production. Mechanized 
operations cover several links, of which the 
harvest link is particularly important because the 
harvest efficiency directly affects the rate of crop 
loss and the final product quality [2]. Therefore, 
to improve the level of automation of agricultural 
machinery, especially the intelligence and 
automation of harvesting machinery, has 
become the focus of the current development of 
agricultural science and technology. At present, 
although some progress has been made in 
agricultural mechanization domestically and 
internationally, there are still many challenges in 
path planning.  
 
Many scholars have certain research on path 
planning. Li et al. proposed an angle-guided ant 
colony algorithm (ACA) to solve the problem that 
ACA was prone to local optimization and slowed 
convergence in mobile robot path planning. In 
the node selection, angle factor was integrated 
into the heuristic information of ACA to guide the 
search direction of ants and improve the search 
efficiency. In addition, the algorithm also 
updated the pheromone differentially for paths 
with different qualities and introduced the 
pheromone chaotic disturbance update 
mechanism. According to the simulation results, 
the algorithm performed well in global search 
ability, could jump out of the local optimal 
solution, and could quickly converge to the global 
optimal solution [3]. Tian introduced an optimal 
path planning method based on the improved 
ACA, which aimed to overcome the problems of 
poor convergence and obstacle avoidance in the 
planning of the optimal path of robots by 
traditional methods. Firstly, the environment 

information and robot motion state information 
were obtained, and then the pheromone was 
updated according to the adaptive 
transformation heuristic function of the target 
point and the wolf pack allocation principle. 
According to the experimental results, the overall 
mean value of collision avoidance of this method 
was 0.97, indicating that the planning 
performance was significantly better than that of 
similar planning methods and had considerable 
application value [4]. Rath et al. used a 
combination of genetic algorithm and neural 
network to control the navigation of humanoid 
robots in a given complex environment. A genetic 
algorithm controller was used to generate the 
initial turning angle of the robot, and then the 
genetic algorithm controller was mixed with a 
neural network controller to generate the final 
turning angle. From the simulation and 
experimental results, satisfactory consistency 
was observed in terms of navigation parameters 
with minimal error limitation, which proved the 
correct operation of the proposed hybrid 
controller [5]. Garcia et al. generated efficient 
collusion-free multi-robot path planning 
solutions for human-controlled environments 
and extended previous research. This scheme 
combined the optimization capability of A* 
algorithm and the search capability of 
coevolutionary algorithm. The result was a set of 
collision-free routes that could be derived from 
the A* algorithm in the process of coevolution. 
This set of routes was generated in real time and 
could be implemented on edge computing 
devices [6]. However, there are still some 
limitations. For example, most of the methods 
cannot effectively identify the distance between 
crop rows and rows in complex agricultural 
environments, resulting in inefficient harvesting 
and unnecessary crop losses. In the face of 
complex background and shadow interference, it 
showed obvious shortcomings.  
 
To solve the problems of low efficiency and crop 
loss of corn harvester in the process of 
harvesting, and the existing path planning 
methods are difficult to adapt to the dynamic 
changes of agricultural environment, a dynamic 
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path planning method of corn harvester based on 
improved ACA was proposed in this research. The 
improved ACA was used to realize fast and 
effective path planning in dynamic environment, 
and the convergence speed of the algorithm was 
enhanced by the adaptive heuristic function of 
the target point. Visual image processing 
technology was introduced to analyze image 
color features and eliminate shadow interference 
to accurately evaluate candidate points and 
determine navigation routes. This study 
combined the improved ACA with visual 
navigation technology and put forward an 
efficient dynamic path planning solution. The 
particle swarm optimization (PSO) algorithm was 
used to optimize the key parameters of the 
improved ACA, which made the whole algorithm 
more efficient. This study would provide an 
important reference for the research and 
application of intelligent agricultural machinery 
and equipment, and also promote the 
autonomous operation ability of agricultural 
machinery under more complex and changeable 
environmental conditions, laying the foundation 
for the sustainable development of agriculture in 
the future. 
 
 

Materials and methods 
 
Image acquisition, analysis, and preprocessing 
A general digital camera was fixed to the 
rearview mirror on the side of the corn harvester 
in front of the boundary line with the height 
about 2 m and the down-looking angle about 30°. 
The average speed of the harvester was 10 km/h. 
The scene color video images were captured in 
the process of harvesting with the frame rate of 
the video acquisition of 25 frames/s and the size 
of each frame of 640 × 480 pixels. During the 
harvest of the first season rice, the drainage roast 
field was used to help the harvester walk. For the 
complexity of the growth of leaf and rice pile in 
the ratooning rice, the appropriate color space 
was selected for image segmentation. The whole 
grayscale space was divided into regions and 
path regions of the ratooning rice plants with 
distinct gray values. The saturation (S) difference 

was used to segment the path from the complex 
image information. 
 
Threshold Segmentation 
The improved Otsu method was applied to obtain 
the initial threshold (T) of the S component and 
binary processing. When binarization, combining 
the histogram feature of S component, reducing 
the segmentation threshold properly could help 
to retain the characteristics of the plant and 
reduce the interference of the stem and leaf with 
different maturity. Therefore, the correction 
factor (a) was added to the segmentation 
threshold. The binarization of the S component 
was then with the threshold T-a. After multiple 
image tests, a was set to 12 to reach a 
satisfactory result. The farmland image was 
divided into the white plant area and the black 
path area, and the left and right boundary of the 
plants reflected the trend characteristics of the 
ratooning rice. 
 
De-noising and other postprocessing 
After the binary image was obtained, black holes 
appeared in the plant area and the white spot 
noises appeared in the path area, which 
introduced the noises for the young green weeds 
grown in the soil after the drainage of the field. 
The connectivity analysis of expansion region was 
first carried out for the 7 × 7 structural elements. 
The denoising method was used for the 
connected area. The area TH1 took 800 pixels to 
obtain a better result. Then, the 5 × 5 elements 
were used to carry out morphological closure to 
further remove the noise. 
 
Dynamic path planning for mobile robot based 
on improved ant colony algorithm 
To facilitate the search of the optimal path by 
ACA, the grid method was used to divide the 
environment, which assumed that the working 
space of the robot was a finite area on the two-
dimensional plane, and the starting point and the 
target point were S and T, respectively. The 
optimization criterion of the path planning was 
for the shortest path, that was, to find the 
shortest path to avoid obstacles from S to T [7]. 
The grids were numbered in order from left to 
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right and from top to bottom. The robot could 
reach the adjacent grid in 8 directions including 
upper, down, right, left, upper right, upper left, 
lower right, and lower left. The workspace of the 
robot was made up of grids with M row and N 
column. The number of the row and column of 
the environmental grid corresponding to a 
random grid (R) was x and y with the relational 
expressions below. 
 

/ 1x R N= +                                  (1) 

 
% 1y R N= +                            (2) 

 
The map of the obstacle was represented by a 
two-dimensional array matrix map (M, N), which 
was given as follows. 
 

1       ( ,  ) 
( , )

0

There is obstacle on the grid p q
map p q

Others


= 


，

，
   (3) 

 
For the shortcomings of ACA such as slow search 
speed and easy to fall into local optimum, the 
pheromone update based on adaptive adjusting 
heuristic function and principle of wolf pack 
allocation was proposed [8]. 
 
Adaptive adjusting heuristic function 
The probability of the transfer of ant a from the 

grid i to the j at the time t was defined as ( )a

ijp t

below. 
 

( ) ( )

( ) ( )
( )

0,

a

ij ij

a
a is is
ij s allowed

t t
ifj allowd

t t
p t

otherwise

 

 

 

 





=





，

              (4) 

 

where ( )ij t  was the heuristic function of the 

subsequent grid. ( )ij t  was the concentration of 

pheromones remaining on the path <i, j> at the 
time t.   and   were the influence weights of 

the ( )ij t  and ( )ij t  on the whole transfer 

probability. aallowed  was the grid number for the 

ant a allowed to select in the next step. In the 

traditional ant colony, the heuristic function of 
the subsequent grid ( )ij t  was as follows. 

 

1
( )ij

ij

t
d

 =               (5) 

 
where 

ijd  was the distance from the grid of i to j. 

In the traditional ant colony, the heuristic weight 
difference between adjacent grid was not 
obvious, so the search efficiency of the algorithm 
was low. As the position of the target point was 
known, the distance ( )(1 8)dis h h   between the 

8 grids and target point could be calculated. The 
heuristic weights of the surrounding grid were 
then adjusted adaptively in a certain proportion 
by the value of ( )dis h . The smaller the value of 

( )dis h , the greater the heuristic weight of the hth 

grid. In this study, it was set to 1:2:3:3:4:4:5. If the 
target point of the mobile robot was on the lower 
right of the current point, the heuristic function 
of the grid around the current point would be: 
 

, j i N 1

2 , 1

( ) 3 , 1 1

4 , 1

5 , 1

ij

j i N or j i

t j i N or j i N

j i or j i N

j i N




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



= − −

 = − = −
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

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 = + +


           (6) 

 
Pheromone updating mechanism based on the 
principle of wolf pack allocation 
After n time, the ant colony completed a cycle of 
movement, leaving the pheromone on the path it 
passed, and the pheromone concentration would 
be distributed over time. The pheromone 
concentration on path <i, j> at the time t was 
defined as ( )ij t , then the concentration at the 

time t + 1 was given as follows. 
 

( 1) (1 ) ( )ij ijt t   + = − +                          (7) 

 
m

a

ij

a

  =                                           (8) 
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where   was the pheromone volatilization 

coefficient. a

ij  was the pheromone 

concentration of the ath ant on the path <i, j> in 
this cycle. The ant-cycle computing model based 

on global information was used to obtain a

ij . 

 

/ ,       ,

0 ,

aa

ij

Q L if the ath ant pass through i j

Others



 = 




        (9) 

 
where Q  was the constant of the pheromone 

concentration. 
aL  was the path length of ant a in 

this cycle. The pheromone was updated by using 
the principle of wolf pack allocation. The path 
pheromone concentration according to the 
principle of wolf pack allocation was updated by 
the equations below. 
 

1

( ) ( ) ( ) * **
m

a

ij ij ij ij ij

a

t     
=

+   − t +1 = 1-      (10) 

 
*( / ),    sin   ,

*
0 ,

ij

Q L Local optimal path pas g through i j

Others





 =

 ，

    (11) 

 
**( / ),    sin   ,

**
0 ,

ij

Q L Local worst path pas g through i j

Others





 =

 ，

   (12) 

 

where *L  and **L  were the lengths of local 
optimal path and local worst path.   and   
were the numbers of local optimal ants and local 
worst ants. 
 
Parameter optimization based on particle 
swarm optimization 
The important parameters of the improved ACA 
were the influence weights of pheromone 
concentration and heuristic function on the 
transfer probability   and  , pheromone 

volatilization coefficient  , pheromone 

concentration constant Q, and heuristic function 
 . Parameters were selected by experience and 
optimized using PSO, a novel evolutionary 
algorithm, that assumed D-dimensional search 
space and m particle number. For a particle 1, the 
position and velocity were 1x  and 1v , 

respectively.  

1 1( ,..., ,..., x )l ld lDx x x=                        (13) 

 

1 1(v ,..., v ,..., v )l kl lDv =                         (14) 

 
where 1 ,1l m d D    . The best position of 

the solution space of the particle 1 was 

1 2( , ..., )l l l lDP P P P= . The position of the particle 

with the optimal fitness was 
1 2( , ..., )g g g gDP P P P= . 

The evolution equation of particle swarm was 
then given as 
 

1

1 1 2 2( ) ( )k k k k k k

kl kl kl kl gd klV wV c r P X c r P X+ = + − + −          (15) 

 
1 1k k k

kl kl klX X V+ += +                         (16) 

 
where w was inertia weight. 

1c  and 
2c  were 

learning factors. 
1r  and 

2r  were random 

numbers with uniform distribution in  0,1 . k  

was the number of iterations. The range of 
changes of the position and velocity of the dth 

particle were  ,d dXMIN XMAX  and 

 ,d dVMIN VMAX . If the value calculated by 

equations 15 and 16 exceeded this range, it was 
set as the boundary value. 
 
Navigation route detection method for corn 
harvester based on image processing 
Detection Navigation Path Point Set 
The total number of black spots in each row of 
the image was detected based on the 
characteristics of the left and right boundary 
region of the plant. The steps of the extraction of 
the set point were (1) building an empty matrix 
A, denoted as M*N. Initializing temporary 
variables m = 0 and k = 0; (2) scanning the image 
after denoising line by line. Assuming the first 
point of the scanned image was the upper left 
corner of the image. If the pixel value of the 
current image point (i, j) was 0, m+ +  and 

2k m= ; (3) scanning the column in the step (2) 

again to determine the point coordinates in the 
path. If the pixel value of the current image point 
(i, j) was 0, k = − − . Until k==0, the coordinates (i, 
j) were recorded. The pixel value 255 was stored 
in A; (4) stop scanning until M row, otherwise 
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continue the step (2). The A was stored in the 
denoised image. The extraction result showed 
the mean position of the point in the path. 
Because the image size was larger and in the 
presence of noise, the detection results of local 
point had deviation, but did not affect the overall 
results [9, 10]. Therefore, the algorithm had 
certain anti-interference to the cavitation and 
spot noise in the binary image. 
 
Extraction of navigation line 
The information of the navigation line could be 
extracted after the path fitting point was 
detected. For the crops, the linear path model 
was used. The navigation line could be detected 
according to the binary image of the ratooning 
rice plant, so that the wheeled harvester walked 
along the navigation line to reduce the pile 
compression rate. The Hough transform has good 
adaptability to the random noise of the image 
and the missing part of the information [11]. 
Standard Hough transform and Hough transform 
based on known points were compared in this 
study. Opencv provided a standard Hough 
transform function - Houghlines to detect a 
straight line, while Hough transform based on the 
known point was used to extract the information 
of the navigation line. Because the growth of rice 
leaves at the end of the image was relatively 
irregular, the selection of known points started 
from the image M/2 row to scan all the path 
fitting points of the image and calculate the 
average position of its abscissa and ordinate, 
which was regarded as known points. 
 
Image detection of boundary line of corn 
column 
During navigation, a series of natural factors such 
as crops, weeds, and soil interweave in the 
process of navigation formed a complex 
detection environment. Meanwhile, camera 
resolution, color difference, and the vibration of 
cameras also affected the detection results [12]. 
This study first assumed the boundary of corn 
column as a straight line, and then analyzed the 
color features of the color image of red (R), green 
(G), and blue (B) to obtain the candidate points. 
A specific point as the known points was obtained 

by variance within a specific area of candidate 
points. Hough transform of the known point was 
then used to obtain the navigation line. 
 
First frame image detection 
Assumed that the upper left corner of the set 
image was the origin of the coordinates, and the 
right direction was the x positive direction and 
down to the y positive direction, x size was the x 
direction width and y size was the y direction 
height. The following steps were processed to 
obtain the first frame image. 
 

 

o

Backup point

Point of minimum 

G component after 

shadow removal

s s

ss

s s

ysize

xsize

ysize/3

ysize/3

ysize/3

 
 
Figure 1. Backup points of first frame (Note: interesting region 
located in the dotted line boxes: x size was width of the image. Y 

size was the height of the image. s was the number of pixel). 

 
 
(1) On the whole x direction [0, x size - 1], the 
entire image was divided into 3 regions along the 
y direction (Figure 1). The array Pt [y size] was 
defined to store the candidate point, and the 
initial value was set to −1. The range of the y 

direction was defined as  ,  n nsy ey . 

 

   , ( 1) / 3, / 3n nsy ey n ysize nysize= − g          (17) 

 
where, nsy  and ney  were the starting and ending 

positions of the nth region. n was an integer 

variable with the range of  1,3 .  

 
(2) The input color image was scanned line by 

line. The arrays  _buff r xsize ,  _gbuff xsize , 
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and  _bbuff xsize  were used to store the vertical 

cumulative pixel values of R, G, and B 
components in the processing window. The mean 
of the _rbuff  and _bbuff  was obtained as 

_rmean  and _bmean . If _r _bmean mean= , 

color = 1, otherwise, color = 2. 
 
(3) If the cumulative value 

   _ _ 0 (0 1)buff b i buff g i i xsize−    − , the 

corn plants had a shadow. Then set 

 _ 255 _ (size_y ey sy 1)buff g i size y= = − +g , 

otherwise, keep  _buff g i  unchanged. The 

smoothing processing of the array _buff g  was 

carried out with the step length of 6, and the 
element with the smallest pixel value was 
obtained. Then the cross coordinates of this point 
were recorded as pos. 
(4) Taking pos as the center, s pixels were 
extended to the left and right (set / 40s xsize= ). 
The width of the 3 dynamic region of interest was 
set in the range of the x direction as follows. 
 

   ,ex ( ), (n nsx pos s pos s= − +           (18) 

 
where pos was the pixel minimum abscissa. To 
remove the shadow interference, if color = 1, the 
R component was used as the processing object 
XX. If color = 0, the B component was used as the 
processing object XX. Each pixel in the processing 
range was scanned in turn. If the value of the XX 
component was less than or equal to the value of 
the G component, G was set to ( max min) / 2g g−

, otherwise, save the original value of G. 
 
(5) The known point was found in the 1/2 of the 
upper part of the image. The variance and mean 

of the value of    / 2 ~ 3 / 4 1Pt ysize Pt ysize −g  

whose value was not -1 were denoted as sd1 and 
mean1. The variance and mean of the value of 

   3 / 4 ~ 1Pt ysize Pt ysize −g  whose value was not 

-1 were denoted as sd2 and mean2. If sd1>sd2, 

( )2,3 / 8mean ysizeg  was taken as the known point. 

If sd1<=sd2, ( 1, / 8)mean ysize  was taken as the 

known point. 
 

(6) Hough transformation of known points was 
used to fit the navigation line, and the horizontal 
coordinates of the data were recorded in the 

array  Hp ysize . 

 
The steps (2) ~ (4) were repeated to obtain all the 
candidate points in the first frame of the 3 
dynamic regions of interest (Figure 1). 
 
Non-first frame image detection 
The region of interest of the non-first frame 
image was determined by the angle of the Hough 
line angle and image midperpendicular with the 
following steps [13]. 
 
(1) Setting 0sy =  and 1ey ysize= − , the 

coordinates of the first point  ( 0 ,0)Hp  and the 

last point  ( 1 , 1)Hp ysize ysize− −  on the Hough 

line were taken as parameters. The angle   of 
the Hough line of the previous frame and 
midperpendicular were calculated as below. 
 

   arctan(( 1) / ( 1 0 ))ysize Hp ysize Hp = − − −     (19) 

 
The processing range (dis) was given as 
 

/ 3dis  =  +g                          (20) 

 
where   was the inter pixel distance.   was the 

cardinal number. In this study, / 20dis xsize . 
 
 

o

ysize

xsize

Backup point

 
 

Figure 2. Backup points of non-first frame. dis was the number of 
pixels. 
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(2) The candidate point was detected. 

 ( / 2 , )Hp j H j+  was taken as the midpoint. 

Extend the dis pixels to the left and right as the 
processing range ( , )sx ex . If the left side had been 

harvested, it could find the location of the largest 
trough point in the ascending direction of the 
peak value and trough difference. If the right side 
had been harvested, it could find the location of 
the largest trough point in the descending 
direction of the smoothing value [14]. The x 
coordinates of the wave valley point were 
recorded as minpos (Figure 2). 
 
(3) To remove the point with a larger error, 
setting the threshold T as T = dis. The minpos and 
the same position point were compared. If 

 min / 2pos Hp j H T− +  ,  / 2 minPt j H pos+ = . 

If  min / 2pos Hp j H T− +  ,    / 2 / 2Pt j H Hp j H+ = + . 

 
(4) Letting Hj j= + , the steps (2) and (3) were 

repeated. When 1j ysize H − − , stop the cycle. 

 
(5) The same method of the first frame was used 
to calculate the known point. 
 
(6) The navigation curve was fitted and the array 
of points on the navigation line were recorded in 
Hp . 

(7) Whether the algorithm reached the end of the 
field was then judged. 
 
Image detection algorithm for the field end 
For the non-first frame image, the field end 
detection method was as follows. 
 
(1) In the harvested area near Hough line of the 
last frame, the rectangle with the upper left 

coordinates  ( / 1 50, / 1)Hp ysize n ysize n−  and 

lower right coordinates  ( / 2 , ysize/ n 2)Hp ysize n  

was taken as the processing region (n1 = 16 and 
n2 = 6). 
 
(2) In the processing region, the R component 
accumulated horizontally [15]. Accumulative 

values were recorded in the array  50M . 

(3) The variance sd of the array M was calculated. 
 
(4) If sd was greater than the threshold T1 (T1 = 
mean/20e), return to TRUE, otherwise return to 
FALSE. If sd was more than 10 times greater than 
the threshold, it was judged to have reached the 
field end. 
 
 

Results 

Image detection of boundary line of corn 
column 
In determination of the known point and the 
processing region, the cumulative method of G 
component cumulative hop was used to make 
the detection more accurate and reasonable 
[16]. Figure 3 illustrated the real time collected 
images with/without the interference of the 
shadow of the corn column (Figures 3a and 3b). 
The wave valley point with the maximum 
difference was the candidate point (Figures 3c 
and 3d). The accuracy of finding the candidate 
point was improved after removing the shadow 
interference, which was verified by Figures 3a 
and 3b that the left side was harvested, and the 
right was not. The Hough transformation of 
known point was a good way to fit the navigation 
line [17]. The results of the navigation line 
detection corresponding to that in Figures 3a and 
3b were shown in Figures 4a and 4b. The actual 
working environment of the video was tested. 
The statistical test results showed that, in the 
total of 3,777 frames of the video sample, error 
detection was in 30 frames. Among them, the 
candidate points biased due to the dry corn 
harvest area in 27 frames, and the other 3 frames 
was in the corn row. Because the limit of the 
detection range was set, the detection error did 
not affect the correct detection of subsequent 
frames [18]. The detection accuracy was 99.2%, 
and the average processing time of each frame 
was 50.13 ms. 
 
Field end image detection  
The original image and the test results of 
navigation end line were shown in Figure 5 as the 
solid  line.  When  the  environment  was complex, 
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Figure 3. Detection line and vertically integrated graph of G components. a. image with the interference of the shadow of the corn column. b. 

image without interference of the shadow of the corn column. Black box was the G component vertical cumulative region in the region of interest 
from the j + H line to the j line when j = 100. c. vertically integrated graph of G components in image a. d. vertically integrated graph of G components 
in image b. 

 
 
a.       b. 

    
 
Figure 4. Detection result of navigation line with different light conditions. a. detection navigation line of Figure 3a image. b. detection navigation 
line of Figure 3b image. 

 
 

 
 
Figure 5. Detection of the field was end. 

the multiple mutation of the color component 
was used to judge the field end, which could 
effectively avoid the misjudgment. The mutation 
of the R component was considered to judge the 
field end. To verify the validity of this method, a 
comparison was carried out to collect the images 
of the ratooning rice at different shooting angles 
in the experimental field. The image was with 419 
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× 310 pixels. Five ratooning rice images were 
compared with standard Hough and Hough 
based on known point. To verify the correctness 
and feasibility of the proposed method, a 
simulation experiment was carried out. The robot 
working environment was divided into a 20 20

grid, and the width and width of each grid were 
20 units. In ACA, the number of populations was 
30 and the maximum number of iterations was 
100. In this study, PSO was applied to optimize 
the important parameters of the improved ACA. 
The number of particles was 20, the maximum 
iteration number was 30, the inertia weight w 
was 0.729, and the learning factors 

1c  and 
2c  

were 1.4962. The range of changes of important 
parameters in the improved ACA was shown in 
Table 1. 
 
Table 1. The change range of important parameters in improved ant 
colony algorithm. 

 

Range   
 


 Q   

Minimum value 0 0 0 100 0 

Maximum value 10 20 1 1,000 20 

 
When the number of the starting and the target 
grid were 21 and 378, respectively, the optimal 
combination of the important parameters of the 
ACA was found by the PSO algorithm as 

1, 7, 0.367, 333, 2Q   = = = = = . The dynamic 

path planning simulation process of mobile robot 
based on improved ACA showed that the block 
was a static obstacle, and the dynamic obstacle 
was a square with a radius of 5 units (Figure 6). 
 
 

 
 
Figure 6. The robot collided with a dynamic obstacle. 

The improved ACA could find the global optimal 
path. The grid numbers of the mobile robot 
passing through were 21, 22, 23, 24, 45, 46, 67, 
87, 107, 127, 148, 168, 189, 210, 231, 252, 273, 
293, 313, 354, 375, 376, 377, 378. It was 
supposed that the velocity of robot walking was 
20 units/sec, and the time of turning around each 
corner was 1 s.  
 
 

 
 
Figure 7. The final path of improving the planning of ant colony 
algorithm. 

 
 
The traditional ACA, improved ACA, and A* 
algorithm was compared, and the optimal 
performance of the three algorithms was shown 
in Table 2. The improved ACA could avoid the 
search in local optimum and reduce the walking 
time of the robot. The simulation results proved 
that the improved ACA could effectively solve the 
robot’s dynamic path planning problem. 
 
Table 2. Performance comparison of three algorithms. 
 

Algorithm 
Path length 

(Pixel) 
Time 

consuming (s) 

A* algorithm 602.842 40.1421 
Ant colony 
algorithm 

579.412 38.9706 

Improved ant 
colony algorithm 

562.8427 38.1421 

 
 

Discussion 
 

The shadow of corn column causes great 
disturbance  to  the  accuracy  of  navigation  line 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 18:262-273 

 

272 

 

Table 3. Comparison of time between standard Hough and known point based on Hough. 
 

Image No. 1 2 3 4 5 

Time consuming of standard Hough method (s) 0.081 0.089 0.083 0.092 0.097 

Time consuming of Hough based on the known point (s) 0.065 0.062 0.061 0.064 0.067 

 
 
detection. In this study, the influence of the 
shadow was removed by comparison of G 
component and other color components. The R 
or B component was identified by the color 
identification method, and then compared with 
the G component. The G component which was 
greater than R component or B component was 
set as a fixed value, while retained the G 
component with smaller value, which could 
effectively remove the corn column shadow 
interference [19]. The results of the navigation 
line detection showed that the presence of the 
shadow of the corn column did not affect the 
detection results of the navigation line. The 
fitting line was in good agreement with the actual 
observed target line (corn harvest boundary line). 
Although there was corn shadow interference, 
because the G component was strengthened and 
the shadow interference was eliminated, the 
navigation line detection result was not affected 
by the corn column shadow. The extracted 
Hough line based on the known point kept the 
precision of the standard Hough. The time-
consuming comparison of the 2 algorithms 
showed that the Hough based on known points 
took less time and was easy to meet the real-time 
requirement of the auxiliary driving (Table 3). The 
proposed method had good adaptability to 
navigation path detection under the condition of 
rice leaf overlapping. The fitted navigation line 
basically reflected the trend characteristics of 
ratooning rice and was consistent with human 
vision sense judgment [20]. The navigation path 
fitted by Hough transform based on known 
points was to improve the efficiency of 
navigation line detection [21]. The experimental 
results demonstrated that the proposed method 
had some anti-interference to the overlapping of 
middle and low layer rice leaves. This study 
proposed dynamic path planning for the mobile 
robot based on improved ACA. The dynamic area 

of interest was set for the detection of navigation 
line using different methods of first and non-first 
frame images, reducing the amount of data 
processing while adapting to the tilting of target 
line and ridge line. Multiple mutation of color 
component R was used to judge the field end in 
the case of the complex field end image for the 
detection of the termination line of the field end 
navigation [22]. The known points were found in 
the semi-part of the image in the process of real 
time navigation. The results confirmed that the 
judgment of the navigation line was accurate, 
and the judgment of the field ends coincided with 
the reality. An improved ACA was used to make 
dynamic path planning for the mobile robot with 
the improved speed of search. Based on principle 
of wolf pack allocation, the ants with local 
optimal paths in each cycle were found. The 
released pheromone quantity was increased, and 
pheromones released by ants on local worst path 
were removed. The interference of the 
pheromone on the worst path was avoided, and 
the convergence speed was improved. The 
improved ACA was used to realize the dynamic 
path planning of the mobile robot, and the 
feasibility and effectiveness of the path planning 
method were proved. 
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