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With the development of society and the continuous increase in energy consumption, timely exploration of 
mineral resources is very necessary. Lithology identification is an important way to understand the structure of 
underground rock layers, but current lithology identification techniques face problems such as imbalanced logging 
data and difficulty in predicting small proportions of lithology. To improve the accuracy of lithology identification, 
this research proposed a method from two perspectives including data processing and model optimization. A 

synthetic minority oversampling technique (SMOTE) was designed to address the issue of imbalanced logging data 
to improve the recognition rate of minority lithology, while a hybrid algorithm combining particle swarm 
optimization algorithm and gradient boosting decision tree (GBDT) was designed and the hyper-parameters of the 

GBDT were optimized through particle swarm optimization algorithm. Further, a lithology recognition model 
based on logical three-dimensional convolutional neural network (logic-CNN) algorithm was constructed to 
investigate the lateral correlation between lithology and geophysical data. The results showed that, after using 
the SMOTE, the recognition rates of mudstone, argillaceous siltstone, siltstone, volcanic rock, and tuff increased 
by 1.30%, 3.03%, 1.90%, 1.03%, and 12.09%, respectively. The training and testing time of a hybrid algorithm 
combining particle swarm optimization algorithm and GBDT was 43 s and 279 ms, respectively. The lithology 
recognition model based on logic-CNN algorithm had a prediction accuracy of over 75% in drilling lithology. The 

designed algorithms and models demonstrated good performance and could provide technical support for 
lithology identification in uranium mining drilling. 
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Introduction 
 
With the development of human civilization, the 
consumption of energy by humans is also 
continuously increasing. Uranium ore is mainly 
used in the nuclear industry and has significant 
strategic significance [1]. Well logging data is one 
of the attributes of information in mineral 
exploration with high resolution, which can 

reflect the changes in geophysical properties in 
the vertical direction. Lithological identification is 
one of the key methods in logging technology and 
an important way to understand the structure of 
underground rock layers [2]. At present, common 
methods for rock classification and recognition 
include intersection plot method, probability and 
statistical method, cluster analysis method, and 
machine learning method. The intersection 
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diagram method is the earliest proposed 
method, which has the advantage of simple use, 
but also has the problems of large errors, high 
time and labor costs. Probability and statistical 
methods are technically complex and require a 
significant amount of information [3, 4]. With the 
rapid development of computer technology and 
machine learning, the support vector machine 
(SVM) and neural networks have gradually been 
applied to lithology recognition. 
 
As the significance of sandstone-type uranium 
resources continues to be recognized, many 
scientists are engaged in research on the 
development of lithology identification 
technology. Bajwa et al. selected color composite 
images under different band combinations to 
explore the drawing effect of land satellite 
thematic imaging instruments on rock lithology 
and used Erdas Image software to process the 
images. By changing the color tone of the image, 
different rock formations could be identified, and 
different bands were suitable for identifying rock 
lithology in different periods [5]. To improve the 
efficiency of uranium production blocks, a 
previous study conducted theoretical 
information analysis on the process flow of 
uranium production, determined the regression 
relationship between the main indicators of the 
production process cycle, and calculated the core 
geological and technical indicators, which 
identified problem areas and effectively reduced 
development costs and improved efficiency [6]. 
Chen et al. designed an algorithm that combined 
laser-induced breakdown spectroscopy and 2D 
deep convolutional neural network (CNN) to 
identify the lithology and main elements of rocks, 
using two different outputs to complete 
classification and regression tasks simultaneously 
and resulted a high accuracy rate of over 99% [7]. 
Yan et al. designed a recognition model grounded 
on CNN to lift survey efficiency and constructed 
it into a specialized recognition system. This 
model could not only identify lithology, but also 
identify the degree of weathering and showed 
good performance with recognition accuracy of 
over 95% and 91% for weathering degree and 
lithology, respectively [8]. Further, Hossain et al. 

designed a lithology prediction technique based 
on rough set theory to predict the complex 
lithology of the formation by constructing a 
logical rule for data from multiple logging data. 
Rock debris data was used to verify the 
performance of this prediction technique, and it 
was found that the misclassification rate of this 
method was low to about 18%, which could 
effectively predict lithology [9]. To analyze 
reservoirs in complex geology, Hemiram et al. 
designed wavelet transform to decompose the 
frequency spectrum and determined the 
characterization wavelet of reservoir lithology. A 
few advanced attribute analysis processes could 
use spectral decomposition volume. Gaussian 
wavelets had better performance, and the 
images generated by attribute analysis could 
reflect the range of reservoir lithology [10]. To 
explore the influence of deep geological 
conditions on the mechanical properties of shale, 
scientists designed real-time high temperature 
triaxial compression experiments by constructing 
a thermal coupling model and utilizing micro 
mechanical parameters to construct a numerical 
fracturing mechanism model to verify that the 
influence of confining pressure on rock 
mechanics was greater than that of temperature 
[11]. Sun et al. proposed two special conditions 
and established an inverted L-shaped model to 
understand the evolution of permeability during 
rock shear displacement, which involved matrix 
and cracks and could analyze the evolution of 
permeability and internal morphological changes 
in cracks. This model could analyze the evolution 
of permeability well, and both the initial crack 
size and the surface roughness of the crack would 
have an impact on the evolution of permeability 
[12]. 
 
There is currently a wealth of research on 
uranium ore lithology identification technology, 
and the methods involved are also diverse. 
However, the current lithology identification 
models suffer from issues such as imbalanced 
logging data, difficulty in predicting small-scale 
lithology, and low optimization efficiency [13]. To 
improve the accuracy of lithology identification, 
this study focused on two perspectives including 
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Figure 1. The denoising process of NWTTM. 

 
 
data processing and model optimization. The 
objectives of this study were to improve the 
recognition rate of minority rock types, improve 
the optimization efficiency of recognition 
models, provide information technology support 
uranium mining, and improve the efficiency of 
uranium mining. This study designed the 
synthetic minority oversampling technique 
(SMOTE) algorithm and constructed a combined 
particle swarm optimization (PSO) - gradient 
boosting decision tree (GBDT) algorithm. Then, a 
lithology recognition model was built based on 
the logical three-dimensional convolutional 
neural network (logic-CNN) algorithm. The 
results of this study would enrich the research 
achievements in the field of lithology recognition 
and provide guidance for subsequent research.  
 
 

Materials and methods 
 
Design of SMOTE algorithm for imbalanced 
logging data 
In response to the issue of imbalanced logging 
data, this study employed SMOTE to achieve data 
balance and preprocesses the logging data. The 
correlation function method was taken to 
perform depth correction on logging curves, and 
the nonlinear wavelet transform threshold 
method (NWTTM) was used to denoise logging 
data. The minimum and maximum normalization 
method (MMNM) was then applied to 
standardize the logging data. The correlation 
coefficient between the shift point b  of the 
logging curve and the benchmark logging curve 
was calculated by equation (1). 
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where h  was the baseline logging curve. j  was 

the comparison logging curve. c  was the starting 
comparison position on h . d  was the quantity of 
sampling points for the comparison length 

segment within h . gh  was the g -th sampling 

value of h . h  was the average value of h  in the 
comparison length segment. b  was the number 

of points j  moves relative to h . 1gj +  was the 

g b+ -th sampling value of j . j  was the average 

value of j  in the comparison length segment. L  

was the maximum amount of points for h . M  
was the maximum points that j  could move in 

one direction. NWTTM not only could process 
Gaussian white noise in logging data, but also had 
significant advantages in processing time. The 
denoising process of this method was illustrated 
in Figure 1 [14], where the first step of NWTTM 
denoising was to input the original signal, and the 
second step was to perform wavelet 
decomposition and obtain wavelet coefficients at 
different scales. The third step was to perform 
threshold quantization on different wavelet 
coefficients and obtain wavelet decomposition 
coefficients, while the fourth step was to 
reconstruct the wavelet coefficients preserved at 
different scales, and the fifth step was to output 
the denoised signal. The normalization process of 
MMNM was shown in equation (2) [15]. 
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Figure 2. The main process of SMOTE algorithm. 

 
 

where opn  was the value of the p-th sample 

under the o -th logging curve. opN  was the 

corresponding standardized data. 
minon  was the 

minimum value. 
maxon  was the maximum value. 

  was the quantity of samples in the dataset. 
The purpose of classification models was 
generally to reduce the loss function of the entire 
dataset, which could easily lead to the 
misclassification of minority rock samples into 
majority classes, affecting the accurate 
identification of minority rock samples. 
Therefore, this study adopted SMOTE algorithm 
to balance the preprocessed logging data. 
SMOTE had the advantages of diverse synthetic 
samples and high data utilization, effectively 
handling the matter of data imbalance in multi-
classification problems [16]. The main process of 
SMOTE included the steps of (1) reading the data 
from the training set, (2) setting the balance 
number and calculating the new samples, (3) 
calculating the A nearest neighbor samples of 
minority class samples, (4) setting the minority 
class samples to 0, (5) setting the number of 
iterations to 0, (6) synthesizing a new sample, (7) 
increasing the iterations by 1, and (8) 
determining whether the iterations were greater 
than the new samples (Figure 2). If it was 
determined to be true, 1 was added to the 
minority classes, otherwise, the process went 
back to step 6. The final step 9 was to determine 

whether the minority classes were greater than 
that in the training. If yes, the process ended, 
otherwise, the process returned to step 5. The 
calculation of the new sample was shown in 
equation (3). 
 

1, 1,2,...,balance

i i

minority

R
R i

R
 − = 

 (3) 

 
where 

balanceR  was the number of balanced 

samples. i

minorityR  was the number of i -th 

minority class samples.   was the number of 
minority classes. The calculation of the new 
sample data was as below. 
 

( )rand(0,1)new i is s s s = +  −
 (4) 

 

where 
is 

 was a minority class sample. s  was a 

randomly selected sample from is  's k  nearest 

neighbor samples. rand(0,1)  was the generation 

of a random number within (0,1). 
 
Validation of SMOTE algorithm 

To validate the performance of SMOTE, this 
study analyzed its performance in minority 
lithology recognition and overall lithology 
recognition and preprocessed the data before 
the experiment. The data used in the study was 
obtained  from  well  logging  data  of  sandstone 
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Figure 3. The training process of CART. 

 
 
type uranium deposits in a uranium mining area 
at the southern end of Daqing Placanticline in the 
Songliao Basin, Heilongjiang province, China. The 
data was subjected to secondary survey 
screening and original drilling verification by the 
Tianjin Geological Survey Center of the China 
Geological Survey (Tianjin, China). An one-week 
drilling data from 6 logging curves and 6 logging 
sample points in 2018 were selected for this 
study. The preprocessed logging data was 
randomly divided into 20% for model training and 
the remaining 80% for model testing. The 
operating system used in the experiment was 
Windows 11 with an Intel Core i5 12600K 
processor, a main frequency of 3.7 GHz, and a 
maximum memory of 128 GB. For the 
identification and analysis of minority rock types, 
this study constructed GBDT classification 
models before and after using the SMOTE 
algorithm and analyzed the results using a 
confusion matrix. 
 
Design of PSO-GBDT algorithm for improving 
optimization efficiency 
To improve the accuracy of lithology 
identification, a PSO-GBDT algorithm combining 
PSO and GBDT was constructed. The GBDT 
algorithm that uses classification and regression 

tree (CART) as a weak learning machine has the 
advantages of short prediction time and high 
recognition accuracy, which can effectively solve 
multi-classification problems [17, 18]. The 
training process of CART included steps of 
reading the training set data, initializing the 
parameters of the CART tree, selecting 
appropriate features and thresholds, and 
branching the nodes of the CART (Figure 3). Due 
to the significant impact of hyper-parameter 
selection on the classification results of machine 
learning algorithms, it was necessary to make 
optimal selection that could be seen as multi-
objective optimization. PSO can reduce the 
complexity of problems and is widely used for 
solving multi-objective optimization problems. 
Therefore, this study adopted the PSO-GBDT 
algorithm for hyper-parameter optimization and 
identifies lithology. The process of PSO-GBDT 
included the steps as (1) defining the position of 
particles in the PSO algorithm, (2) setting the 
particle swarm size, maximum number of 
iterations, and minimum particle fitness, (3) 
determining the fitness function, (4) setting the 
particle activity interval, (5) initializing the 
particle swarm position vector and velocity 
vector, (6) calculating the current fitness of the 
particles and initializing the local optimal solution 
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Figure 4. The process of PSO-GBDT algorithm. 

 
 
(LOS) for each particle, (7) determining the global 
optimal solution (GOS) and updating the particle 
velocity and position attributes, (8) updating the 
LOS and GOS for each particle, (9) determining 
whether the maximum iterations had been 
completed. If yes, then output the optimal 
solution, otherwise, returning to step 1 (Figure 
4). The representation of particle x  was shown 
in equation (5). 
 

learning rate

number of decision trees

subsample ratio of columns

maximum depth

x

 
 
 =
 
 
   (5) 

 
where “learning rate” was the learning rate of 
the algorithm. “number of decision trees” was 
the number of CART generated. “subsample ratio 
of columns” and “maximum depth” were the 
proportion of samples required to train a single 
CART and the growth depth of a single CART, 
respectively. The calculation of the fitness 
function was shown in equation (6) [19]. 

( ) ( )GBDTsolvef x x=
 (6) 

 

where ( )GBDTsolve x  was the recognition error of 

the GBDT model on the test set when the hyper-
parameter value was the particle value x . The 
calculation of the LOS for each particle was as 
follows. 
 

( )pbestt tf x=
 (7) 

 
where 

tx  was the particle swarm position vector. 

t  was the particle number. The calculation of the 
GOS was as below. 
 

( )gbest min pbest=
 (8) 

 
where pbest  was the LOS of all particles. The 

updates of particle velocity and position 
attributes were shown in equation (9). 
 

( ) ( )1 2' rand(0,1) pbest rand(0,1) gbest

'

t t t t t

t t t

v v x x
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  = +   − +   −


= +  (9) 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 18:53-64 

 

59 

 

Adaptive 

moment 

estimation 

optimizer 1

Adaptive 

moment 

estimation 

optimizer 2

3D seismic

Convolutional 

operation

3D filter

Convolutional 

operation

3D sound waves

Convolutional 

operation

3D filter

3D lithology

Logging 

lithology

Convolutional 

operation

Logging 

acoustic 

waves

 
 
Figure 5. Structural diagram of Logics-CNN model. 

 
 
where 

tv  was the velocity vector. 
1  and 

2  

were both learning factors. The updates of local 
and GOSs for each particle were then shown in 
equation (10). 
 

( ) ( )

( ) ( )

pbest ' , pbest

gbest' min pbest , gbest min pbest

t t t tf x if f x

if

 = 


=   (10) 

 
where pbest 't  and gbest'  were the updated LOS 

and GOS for each particle, respectively. 
 
Validation of PSO-GBDT algorithm 
To verify the performance of PSO-GBDT, this 
study analyzed its training and testing time, as 
well as the accuracy of the algorithm in lithology 
recognition. The selected comparison algorithms 
include SVM [20], probabilistic neural network 
(PNN) [21], random forest (RF) [22], and adaptive 
gradient boosting (AdaBoost) [23].  
 
Design of logic-CNN algorithm for 3D lithology 
recognition 
To further improve the accuracy of lithology 
identification, a logic-CNN model was designed. 

The structure of the logic-CNN lithology 
recognition model mainly included 3D seismic, 
3D filter, 3D acoustic, 3D lithology, logging 
lithology, logging acoustic, convolution 
operation, weight coefficient, bias coefficient, 
and adaptive moment estimation optimizer 
(Figure 5). The logic-CNN model not only 
combined artificial interpretation of lithology 
logic and CNN, but also integrated geophysical 
data such as seismic and logging data. The 
reservoir lithology exhibited 3D spatial 
heterogeneity characteristics. Through 3D 
seismic exploration and corresponding 
information, it could provide good information 
support for 3D imaging of lithology. As one of the 
representative algorithms of machine learning, 
CNN has the ability of representation learning. 
The main content of CNN algorithm includes 
three points including local connections, weight 
sharing, and pooling. The nonlinear output in 
CNN is mainly achieved through activation 
functions. The nonlinear relationship between 
input features and output targets was in 
equation (11) [24]. 
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( )W U  = +
 (11) 

 
where  was the input matrix and   was the 

output matrix.   was the nonlinear activation 

function. W  was the weight filter, also known as 
the weight coefficients. U  was the bias 
coefficient. By using the size of the loss function 
and the random gradient descent method, the 
weights in the neural network model could be 
automatically adjusted and used for predicting 
the 3D lithology distribution. The definition of the 
loss function was shown in equation (12). 
 

( ) ( )
1

ˆ ˆLOSS log 1 log 1
G

   


   
=

= − + − −
 (12) 

 
where G  was the amount of output data.   was 
the serial number of the output data. 

  was the 

measured data. ˆ  was the model output data. 

The error calculation between the generated 
value and the true value of acoustic data was as 
below. 
 

( )
2,

, ,, 1

1 ˆLOSS'
S

S


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
 =

= −
+
 D DD

 (13) 

 
where   was the number of boreholes with 
acoustic logging. S  was the recorded data of 
acoustic time difference along each borehole. D  
was the serial number of the logging.   was the 

serial number of the depth segment. , D  and 

,̂ D
 were the predicted and actual logging 

acoustic data for the D -th well and the  -th 
depth segment, respectively. To minimize the 
error, it was necessary to update the weights and 
biases of the neural network as shown in 
equation (14). 
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where   was the training duration.   was the 

learning rate.   and   were the weight and 

bias coefficient updated at the first moment.   

was exponential decay.   was constant. By using 

3D acoustic data and convolution operations, it 
was possible to ultimately generate a 3D 
lithology distribution. The error between the final 
generated 3D lithology distribution and the real 
lithology data was represented by equation (15). 

 

( ) ( ) ( )
,

, , , ,, 1

1
LOSS'' log 1 log 1

S

S


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
   =

 = − + − − +
 D D D DD  (15) 

 
The hyper-parameters of 3D CNN structures 
involved network depth, network width, and the 
size of 3D filters. The designed 3D CNN had a 
network depth of 4, a width of 21, a filter size of 
6 × 6 × 6, and a number of 3 filters. To verify the 
performance of the logic-CNN algorithm, this 
study analyzed the loss function, lithology 
prediction results, and accuracy of the model. 
The selected comparison algorithms include RF, 
eXtreme gradient boosting (XGBoost) [25], and 
AdaBoost.  
 
 

Results and discussion 
 

Performance verification of SMOTE algorithm 
Before using SMOTE algorithm, the recognition 
rates of the seven minority rock types were 
92.21%, 92.52%, 91.76%, 93.76%, 97.87%, 100%, 
and 84.68%, respectively (Figure 6a). After using 
SMOTE to balance the logging data, the 
classification model achieved recognition rates of 
91.89%, 93.82%, 94.79%, 95.66%, 98.90%, 100%, 
and 96.77% on seven minority lithology types, 
respectively (Figure 6b). The results showed that 
the recognition rate of 5 minority rock types had 
been improved to a certain extent after using the 
SMOTE algorithm. Among them, tuff had the best 
improvement effect with an improvement ratio 
of 12.09%. The results confirmed that SMOTE 
could improve the recognition performance of 
classification models on minority rock types. To 
analyze the recognition effect of SMOTE on the 
overall lithology, the corresponding GBDT 
classification models were constructed and 
compared with other data balance algorithms 
including   random  over  sampling  (ROS),   SVM- 
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Figure 6. Comparison of confusion matrices in the recognition results of classification models before and after using the SMOTE.  A: sandstone. B: 
mudstone. C: argillaceous siltstone. D: siltstone. E: volcanic rock. F: granodiorite. G: tuff. 
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Figure 7. Comparison of accuracy and F1 value of classification models under different data balancing algorithms.  

 
 
SMOTE combined with SVM and SMOTE, and 
SMOTENC [26]. After repeating the analysis 10 
times, the accuracy and F1 value of classification 
models were compared under different data 
balancing algorithms. The results showed that 
the average classification accuracies based on 
ROS, SVM-SMOTE, SMOTENC, and SMOTE 
models were 96.25%, 95.57%, 96.27%, and 
96.44%, respectively (Figure 7a). The average F1 
values of the four models were 95.96%, 94.81%, 
95.81%, and 96.11%, respectively (Figure 7b). 

The performance of classification model based 
on SMOTE was significantly better than that of 
other models in terms of accuracy and F1 value, 
which indicated that, after SMOTE processing, 
the model had a better recognition effect on the 
overall lithology. 
 
Performance verification of PSO-GBDT 
algorithm 
The optimal value for the hyper-parameter of the 
maximum number of decision trees generated in 
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Figure 8. Comparison of loss functions for different algorithms. 

 
 
PSO-GBDT was 580, and the maximum growth 
depth of the decision tree was 7. The learning 
rate was 0.02, and the required sample ratio for 
training a single decision tree was 0.9. Different 
algorithms were also used to compare the root 
mean square error (RMSE) and recognition 
accuracy. The results showed that the maximum 
RMSE values of SVM, PNN, RF, AdaBoost, and 
PSO-GBDT algorithms were 3.17%, 2.87%, 2.58%, 
2.29%, and 1.89%, respectively, while the 
minimum values were 2.86%, 2.54%, 2.35%, 
1.98%, and 1.57%, respectively. The maximum 
accuracy values of the five algorithms for 
lithology recognition were 91.37%, 93.46%, 
95.87%, 97.17%, and 98.95%, respectively, while 
the minimum values were 88.51%, 92.75%, 
94.26%, 96.88%, and 97.01%, respectively. 
Therefore, the PSO-GBDT algorithm was 
significantly better than the comparison 
algorithms in terms of RMSE and recognition 
accuracy, indicating its better performance and 
recognition effect. 
 
Performance verification of logic-CNN algorithm 
The lithology of the study area mainly included 
mudstone and sandstone, and there were 10 
boreholes. The comparison of loss functions for 
different algorithms demonstrated that, on the 
training set, RF, XGBoost, AdaBoost, and logic-
CNN algorithms all underwent 40,000 iterations, 
and after nearly 5,900, 5,600, 5,400, and 5,000 
iterations, they tended to flatten out. The 

minimum values of the loss functions for the four 
algorithms were 0.20, 0.18, 0.14, and 0.11, 
respectively (Figure 8a). On the validation set, the 
RF, XGBoost, AdaBoost, and logic-CNN 
algorithms iterated nearly 6,000, 5,750, 5,500, 
and 5,100 times, respectively, and then tended to 
flatten out. The minimum values of the loss 
functions for the four algorithms were 0.21, 0.17, 
0.15, and 0.12, respectively (Figure 8b). The 
results confirmed that the logic-CNN performed 
better than other algorithms. The prediction 
performance of the lithology recognition model 
based on the logic-CNN showed that, among the 
10 drilling wells, the predicted lithology of 
sandstone and mudstone was basically 
consistent with the actual lithology (Figure 9). 
Among them, the predicted lithology and actual 
lithology of drilling with serial numbers A, B, and 
D were completely consistent, while the 
differences between the predicted lithology and 
actual lithology of other drilling were also 
relatively small. Overall, the prediction accuracy 
of all drilling lithology was above 75%, indicating 
that the lithology recognition model based on 
logic-CNN algorithm had good recognition effect 
and performance. The comparison results of 
recognition effects on sandstone of different 
algorithms demonstrated that the F1 values of 
RF, XGBoost, AdaBoost, SVM, and logic-CNN 
algorithms were 82.57%, 83.13%, 85.72%, 
82.67%, and 90.84%, respectively. The accuracy 
rates of the five algorithms were 86.26%, 87.94%, 
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Figure 9. Prediction performance of lithology recognition model based on Logics-CNN. 

 
 
89.76%, 85.72%, and 90.23%, respectively, and 
the recall rates were 77.98%, 78.84%, 80.95%, 
76.13%, and 90.92%, respectively. The precision 
rates of the five algorithms were 94.37%, 95.76%, 
97.75%, 90.94%, and 98.99%, respectively, with 
RMSE values of 2.54%, 2.98%, 2.57%, 3.26%, and 
1.37%, respectively. The logic-CNN algorithm 
performed significantly better than the 
comparison algorithms in terms of F1 value, 
accuracy, recall, precision, and RMSE, indicating 
that the algorithm had superior performance. 
 
 

Conclusion 
 
In response to the common issue of imbalanced 
logging data in lithology identification models, 
this study designed SMOTE algorithm and 
conceived the PSO-GBDT algorithm and logic-
CNN lithology identification models. The results 
validated that, after using SMOTE, the 
recognition rates of the classification model on 
seven minority rock types were 91.89%, 93.82%, 
94.79%, 95.66%, 98.90%, 100%, and 96.77%, 
respectively. Among them, the recognition rates 
of mudstone, argillaceous siltstone, siltstone, 
volcanic rock, and tuff increased by 1.30%, 
3.03%, 1.90%, 1.03%, and 12.09%, respectively. 
The training times for SVM, PNN, RF, AdaBoost, 
and PSO-GBDT algorithms were 3 s, 0 s, 13 s, 20 
s, and 43 s, respectively. The testing times for the 

five algorithms were 398 ms, 1,718 ms, 819 ms, 
318 ms, and 279 ms, respectively. The lithology 
recognition model based on logic-CNN algorithm 
had a prediction accuracy of over 75% in drilling 
lithology. The F1 value, accuracy, recall, 
precision, and RMSE of the logic-CNN algorithm 
were 90.84%, 90.23%, 90.92%, 98.99%, and 
1.37%, respectively. This study gave less 
consideration to the generalization ability of the 
model, and in the future, it could be improved 
from multiple perspectives. The designed SMOTE 
algorithm had a high dependence on lithology 
labels, and this problem could be avoided from 
the perspective of unsupervised learning 
methods in the future. 
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