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With the increasing demand for sustainable ecosystem management, artificial intelligence (AI) offers 
unprecedented opportunities for enhancing ecological restoration efforts. This study leveraged AI, unmanned 
aerial vehicles (UAVs), and deep Q-learning networks (DQNs) to develop an integrated system for ecological 
monitoring and restoration. The research focused on developing an AI-assisted environmental monitoring system 
and an ecological restoration model. The system integrated satellite remote sensing, UAV inspections, and ground 
sensor networks to provide comprehensive real-time monitoring data. Additionally, historical data from 
restoration initiatives and meteorological stations were analyzed alongside the collected data. The study 
demonstrated the effectiveness of the developed AI system in improving environmental governance and resource 
utilization efficiency. Key findings included an increase in vegetation coverage from 0.30 to 0.65, representing an 
improvement of 116.7%; a reduction in soil erosion from 0.25 to 0.10, indicating a 60% decrease; and a significant 
decrease in water turbidity from 25 NTU to 10 NTU, corresponding to a 60% reduction. This research highlighted 
the significant role of AI in ecological environment restoration. By integrating various data sources and employing 
advanced machine learning techniques, the system could predict restoration outcomes and optimize strategies 
based on feature importance. The personalized restoration strategy recommendation system powered by DQNs 
enabled dynamic optimization and environmental adaptability. The empirical evidence from urban transportation 
and agricultural irrigation applications underscored the transformative impact of AI technology on improving 
environmental management and resource efficiency. 
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Introduction 
 
With the robust growth of global tourism, tourist 
attractions have become vital showcases for 
natural and cultural resources. However, this has 
led to unprecedented ecological pressures, 
manifesting in various forms such as biodiversity 
loss, water pollution, soil erosion, vegetation 
cover decline, and landscape fragmentation. 
Excessive tourist activities cause issues like path 

erosion, garbage accumulation, and noise 
pollution, which not only degrade wildlife 
habitats but also diminish tourist experiences. 
These impacts pose serious threats to the 
ecological balance of scenic areas and the long-
term sustainability of the tourism economy, 
especially in ecologically sensitive regions like 
alpine ecosystems, wetlands, and tropical 
rainforests, where effective management and 
restoration measures are urgently needed [1]. 
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Long-term monitoring data on vegetation cover 
show that vegetation cover in the core tourist 
area and its surrounding areas has decreased by 
about 10% in the past 30 years, especially in the 
most frequent tourist sites such as main 
entrances and observation platforms with a 
decrease of up to 15%. Soil erosion depth 
increases obviously on both sides of slope and 
footpath, increasing about 2 cm every year on 
average, which not only affects terrain stability, 
but also may lead to soil erosion and affect water 
conservation [2]. Due to domestic sewage 
discharge and garbage dumping, the water 
quality of rivers and lakes near tourist activity 
areas deteriorated, showing that the dissolved 
oxygen content decreased, and the ammonia 
nitrogen concentration increased. As habitat 
fragmentation and anthropogenic disturbance 
intensify, endemic native species such as certain 
rare birds and insects experience population 
decline and biodiversity loss. Direct contact and 
trampling by tourists have resulted in wear and 
tear on the fragile surfaces of some monuments, 
which over time may cause irreversible damage 
to Machu Picchu's cultural heritage (Urubamba, 
Cusco Region, Peru) [3, 4]. 
 
The ecological environment is the foundation of 
tourism development, crucial for attracting 
tourists and supporting local communities' well-
being and socio-economic stability. To address 
these challenges, the utilization of high-tech 
tools, particularly spatiotemporal analysis and 
artificial intelligence, is imperative [5, 6]. These 
technologies enable precise identification of 
ecological issues, prediction of trends, and 
formulation of efficient remediation strategies, 
facilitating more scientifically informed, forward-
looking, and effective environmental 
management practices [7]. The widespread 
applications of spatiotemporal analysis in natural 
resource management and ecological 
environment monitoring have been seen in 
recent years [8]. By integrating multi-source data, 
these technologies can dynamically track and 
analyze ecosystem changes. However, there 
remains a gap in their comprehensive application 
for the ecological restoration of tourist 

attractions, particularly in strategy formulation 
and effect evaluation [9]. The rapid advancement 
of Geographic Information Systems (GIS), 
Remote Sensing (RS), and Global Positioning 
Systems (GPS) has significantly enhanced 
spatiotemporal analysis capabilities, 
transforming them into powerful tools for 
ecological environment change assessment. 
Studies have shown that integrating multiple 
remote sensing data and GIS platforms can 
effectively monitor the dynamic changes of 
ecological environments in tourist attractions 
and accurately describe their spatial distribution 
characteristics [10]. For instance, the use of long-
term satellite imagery and spectral analysis 
methods has provided detailed insights into 
vegetation cover dynamics, highlighting the 
patterns of ecological recovery and degradation 
[11]. The emergence of spatiotemporal big data 
and the integration of machine learning 
technologies such as the combination of random 
forest (RF) algorithms and time series analysis 
models offer new opportunities for predicting 
ecosystem trends. Techniques like Convolutional 
Neural Networks (CNNs) and other deep learning 
networks have improved the accuracy and 
efficiency of ecological element recognition in 
high-resolution remote sensing images. 
Furthermore, the combination of spatiotemporal 
data mining with artificial intelligence algorithms 
has enabled predictive identification of 
ecological risk areas and provided data-driven 
support for preventive measures [12].  
 
Artificial intelligence (AI), particularly deep 
learning and neural network models, is reshaping 
ecological risk assessment and intelligent early 
warning systems. For example, deep learning-
driven frameworks enable rapid and accurate 
classification of ecological degradation states, 
enhancing the timeliness and accuracy of 
assessments. The integration of continuous data 
streams from Internet of Things (IoT) sensors 
with advanced AI algorithms shows potential for 
proactive identification of ecological risks, 
providing valuable time for preventive measures. 
Machine learning and satellite remote sensing 
data analysis have also been utilized in early 
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forest fire warning systems, improving disaster 
response efficiency and preparedness [13]. In the 
field of ecological restoration, the innovative 
application of machine learning and deep 
learning models is leading to more scientific and 
personalized restoration strategies. Researchers 
are leveraging big data to guide ecological 
restoration through intelligent means. 
Techniques like reinforcement learning have 
demonstrated potential in optimizing water 
resources management strategies, addressing 
water scarcity issues under climate change. 
Machine learning algorithms have been used to 
analyze historical restoration cases, extracting 
key elements of successful restoration, and 
providing a scientific basis for customizing 
strategies. The use of deep reinforcement 
learning (DRL) has shown promise in 
autonomously exploring and determining the 
most effective restoration paths through virtual 
experimentation, reducing costs and risks [14, 
15]. 
 
This study was dedicated to exploring and 
verifying an innovative methodology for 
ecological environment restoration of tourist 
attractions, the core of which laid in the 
integration of in-depth analysis of 
spatiotemporal dimensions and advanced 
artificial intelligence technology, aiming to cope 
with the ecological degradation challenges faced 
by current tourist destinations and ensure the 
harmonious coexistence of long-term prosperity 
of tourism and natural environment. Specifically, 
the study aimed to achieve the following core 
objectives [16], which included to deeply 
understand and quantitatively evaluate the 
ecological environment of tourist attractions, 
comprehensively expose ecological dynamics 
and potential risks, and accurately evaluate the 
impact of ecological health and tourist activities 
through high-precision spatiotemporal analysis 
technology. An intelligent monitoring system 
integrated with AI algorithm was constructed, 
which not only tracked ecological environment 
parameters in real time, but also predicted 
ecological degradation trends, issued early 
warning signals in time, and provided solid 

scientific support for rapid intervention. Further, 
machine learning and deep learning technology 
were used to analyze rich repair cases, optimize 
and generate personalized repair strategies, and 
ensure that the repair measures for the 
uniqueness of each scenic spot achieved the 
highest efficiency and effect [17, 18]. The 
spatiotemporal analysis was employed to track 
changes over time and space. The artificial 
intelligence, particularly machine learning and 
deep learning algorithms, were used to process 
large volumes of data efficiently. Additionally, 
GIS, RS, and GPS were integrated to create 
comprehensive models for ecological 
environment monitoring and assessment. These 
tools enabled the development of intelligent 
early warning systems and data-driven decision 
support mechanisms, which were crucial for 
formulating effective ecological restoration 
strategies [19]. This research was significant not 
only for its practical implications but also for its 
contribution to the scientific community. By 
combining cutting-edge technologies with 
traditional ecological restoration practices, the 
research aimed to advance the field of 
environmental science and management. The 
results would provide a solid foundation for 
future studies and might lead to the 
development of new, more efficient approaches 
to managing human impacts on the natural 
environment. Furthermore, the results of this 
study could have far-reaching effects, influencing 
policymaking and guiding sustainable 
development practices globally [20]. 
 
 

Materials and methods 
 

Research site  
Machu Picchu (Urubamba, Cusco Region, Peru) is 
in the Peruvian Andes, approximately 75 
kilometers (47 miles) northwest of Cusco. 
Situated on a ridge above the Urubamba River at 
an elevation of about 2,430 meters (7,970 feet), 
the site is characterized by a subtropical humid 
climate with distinct seasons. Despite visitor 
limitations to 2,500 people per day, the high 
volume of tourists poses a significant threat to 
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the fragile archaeological site [21]. Activities such 
as walking tours, photography, and guided tours 
have resulted in soil erosion and structural 
damage. Additionally, waste disposal, water 
consumption, and impacts on local wildlife are 
pressing concerns. As a treasure house of 
biodiversity, the ecological environment of 
Machu Picchu is critical for the preservation of 
both the heritage site and the surrounding 
ecosystem [22]. 
 
Data and resources 
The data used in this study were sourced from 
several reputable databases and online 
resources. Geospatial data were obtained from 
the National Aeronautics and Space 
Administration (NASA) Earth Observing System 
Data and Information System (EOSDIS), provided 
by NASA (Washington, D.C., USA) 
(https://earthdata.nasa.gov/). For remote 
sensing imagery, data were sourced from the 
European Space Agency (ESA) Sentinel Hub 
(European Space Agency, Frascati, Lazio, Italy) 
(https://sentinel.esa.int/web/sentinel/home). 
Historical climate data were retrieved from the 
National Oceanic and Atmospheric 
Administration (NOAA) National Centers for 
Environmental Information (NCEI) (NOAA, 
Asheville, North Carolina, USA) 
(https://www.ncei.noaa.gov/) [23, 24]. In this 
study, a variety of advanced remote sensing and 
machine learning techniques were utilized to 
monitor and assess the ecological environment 
of Machu Picchu. For vegetation health 
assessment, the Normalized Difference 
Vegetation Index (NDVI) and the Enhanced 
Vegetation Index (EVI) were calculated using 
Sentinel-2 Multi-Spectral Instrument (MSI) data 
obtained from ESA. To highlight water features 
and identify built-up areas, the Normalized 
Difference Water Index (NDWI) and the 
Normalized Difference Built-up Index (NDBI) 
were computed and used, respectively. Both 
derived from Sentinel-2 MSI data. For time series 
forecasting of visitor trends and potential 
impacts on the site, the AutoRegressive 
Integrated Moving Average (ARIMA) model was 
applied to leverage historical data and 

implement it using Python library statsmodels 
(https://www.statsmodels.org/stable/index.htm
l). To analyze the high-resolution imagery, CNNs 
were employed and implemented using 
TensorFlow (https://www.tensorflow.org/) and 
PyTorch (https://pytorch.org/). Specifically, the 
VGG-16 architecture was utilized, for which pre-
trained models and documentation could be 
found at the TensorFlow Model Garden 
(https://github.com/tensorflow/models/tree/m
aster/research/slim), and the ResNet 
architecture, for which pre-trained models and 
documentation were available at the PyTorch 
Model Zoo (https://pytorch.org/vision/stable/ 
models.html). For detailed analysis and change 
detection, Unmanned Aerial Vehicle (UAV) 
imagery with Sentinel-2 MSI data was integrated 
and processed using Pix4D (https://pix4d.com/). 
To handle categorical data, One-Hot Encoding 
was implemented using pandas 
(https://pandas.pydata.org/docs/reference/api/
pandas.get_dummies.html). Finally, to optimize 
decision-making processes, a Deep Q-Network 
(DQN) was implemented using TensorFlow 
Reinforcement Learning 
(https://www.tensorflow.org/reinforcement_lea
rning) to automate the selection of appropriate 
conservation measures based on the ecological 
conditions detected by the models [25, 26]. 
 
Spatiotemporal evolution analysis 
The remote sensing satellite images such as 
Landsat series over the past 30 years were 
collected, as well as ground-based observations 
such as climate data recorded by weather 
stations, visitor statistics, vegetation cover, and 
soil erosion. Radiometric correction, geometric 
correction, and atmospheric correction were 
applied to the remote sensing image, and then 
image cropping was performed to preserve only 
the study area. NDVI was used to calculate 
vegetation cover and assess soil erosion changes 
through difference analysis. ARIMA model was 
used to analyze the change trend of vegetation 
coverage and tourist number with time. Rigorous 
mathematical models and analytical methods 
were used to analyze the temporal and spatial 
evolution      of      Machu      Picchu's      ecological  
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Figure 1. Specific flow of spatiotemporal evolution analysis. 

 
 
environment. The NDVI coverage was shown in 
Equation 1 [27]. 
 

NIR RED

NIR RED

NDVI
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−
=

+
             (1) 

 
ARIMA is a classical statistical model widely used 
in time series analysis and prediction. It combines 
autoregression (AR), differential integration (I), 
and moving average (MA) processes, hence the 
name ARIMA model. The general form of the 
ARIMA model was shown in Equation 2 [23]. 
 

𝜙(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃(𝐵)𝜀𝑡            (2) 
 

where B was the lag operator. 
ty was the 

observed value of the time series at time t.   

and 𝜃 were autoregressive and moving average 
polynomials, respectively. d was the difference 
order. 𝜀𝑡  was the white noise sequence. Future 
trends could be predicted by fitting series such as 
vegetation coverage or visitor numbers. For 
spatial data, ordinary kriging interpolation (OK) 
was used to estimate the value of unknown 

points, and its equation was given in Equation 3 
[28]. 
 

0

1

( ) ( )
n

i i

i

Z s Z s m
=

= +
            (3) 

 
where, s was the value of the point to be 

evaluated. 
i  was the kriging weight. ( )iZ s  was 

the value of the neighboring known point. m was 
the trend term. The weights were determined by 
minimizing the error variance. Building 
spatiotemporal cube model was an advanced 
process of organizing and analyzing 
spatiotemporal data, which skillfully integrated 
time series and geographical information and 
provided an intuitive and efficient framework for 
understanding dynamic changes. In this process, 
the spatial data layers of each moment were 
carefully arranged like slices of time, stacked one 
by one, and finally constructed into a three-
dimensional, multidimensional data matrix. This 
organization not only preserved the temporal 
order of the data and ensured the consistency of 
dynamic evolution, but also captured the 
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geographical distribution and diffusion patterns 
of phenomena or events through spatial 
dimensions. The space-time cube model was like 
a three-dimensional time camera, which frozen 
the geographical snapshot of each moment, and 
then connected through the axis of time, so that 
the story of data unfolded slowly from a dynamic 
and four-dimensional perspective, providing 
researchers with an all-round and multi-level 
data exploration platform (Figure 1). 
  
Problem identification and cause analysis 
The ecological environment problems of Machu 
Picchu were mainly manifested in the decline of 
vegetation coverage, soil erosion, water quality, 
biodiversity threat, and cultural heritage 
damage. The main causes of these problems 
were excessive tourism, inadequate 
management, inadequate infrastructure, climate 
change, and insufficient public awareness. 
Machu Picchu is a world-class tourist destination, 
and the continuous growth of visitor numbers 
exceeds the carrying capacity of natural and 
cultural heritage, leading directly to vegetation 
destruction, soil erosion, and pressure on cultural 
heritage. The lack of effective tourist 
management measures such as flow restriction, 
reasonable distribution of tourists, and tourism 
activity design with less impact on the 
environment makes environmental pressure 
concentrated in specific areas. The sewage 
treatment system and garbage treatment 
facilities are backward and cannot effectively 
treat the waste generated by increasing tourists, 
resulting in water pollution and environmental 
degradation. Frequent extreme weather events 
caused by global climate change such as heavy 
rainfall and drought, aggravate soil erosion and 
vegetation cover reduction, although not directly 
caused by tourism activities, but closely related 
to climate change trends caused by human 
activities. The lack of awareness of 
environmental protection among tourists and 
residents leads to uncivilized tourism behaviors 
such as littering and illegal picking of plants, 
which cause additional burdens on the ecological 
environment [29]. The ecological environment of 
Machu Picchu is a complex and systematic 

problem, involving tourism management, 
infrastructure construction, climate change, and 
social culture. Therefore, addressing these issues 
requires interdisciplinary, multidimensional 
collaboration, and innovative strategies that 
focus on both short-term mitigation measures 
and long-term sustainable development 
strategies. 
 
AI-assisted environmental monitoring system 
To build an efficient and comprehensive 
environmental monitoring system, the satellite 
remote sensing, unmanned aerial vehicle 
inspection, and ground sensor technology were 
deeply integrated and combined with advanced 
AI algorithm to achieve real-time monitoring and 
intelligent analysis of Machu Picchu ecological 
environment. The flow chart of AI-assisted 
environmental monitoring system was shown in 
Figure 2. Using high-resolution multispectral and 
hyperspectral satellite data such as Sentinel-2 
MSI, various spectral indices for environmental 
monitoring were applied. In addition to NDVI and 
Enhanced Vegetation Index (EVI), other indices 
such as Normalized Difference Moisture Index 
(NDWI) and Normalized Building Index (NDBI) 
were introduced to provide a more 
comprehensive assessment of vegetation status, 
water body distribution, and human impacts. 
Images taken by high-resolution cameras carried 
by drones were recognized and analyzed through 
deep learning networks. Convolutional neural 
network (CNN) architectures including Visual 
Geometry Group 16 (VGG-16) or Residual 
Network (ResNet) were employed to identify 
vegetation types, land cover changes, and 
erosion levels. The basic computational unit of 
CNN was convolutional layer, and its forward 
propagation formula could be simplified as 
equation 4 [30]. 
 

( )j j ij i

i

O f b W X= + 
            (4) 

 

where 
iX  was the input feature map. ijW  was 

the convolution kernel weight. jb  was the bias 

term.  f  was  the  activation  function. O  was the 
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Figure 2. AI-assisted environmental monitoring system. 

 
 
output feature map. Data collected by ground 
sensors such as soil moisture, temperature, light 
intensity were transmitted to the cloud database 
in real time via wireless networks and were 
integrated with satellite and UAV data through 
spatiotemporal fusion technology. Anomaly 
detection and trend analysis were then 
performed by using spatiotemporal association 
rule mining algorithms such as spatiotemporal 
cube query. The time series anomaly detection 
formula was expressed as below.  
  

ˆ

ˆ
t t

t

t

x
z




=               (5) 

 

where 𝑧𝑡  was the current observation. 
tx  and 

ˆ
t  were the predicted mean and standard 

deviation at time t, respectively. ˆ
t  was the 

normalized scores used to identify anomalies. 
 
Ecological environment restoration model 
When constructing the ecological environment 
restoration model, the prediction ability of 
random forest algorithm and the process of 
feature selection, model optimization, and 
parameter optimization were all explored to 
ensure the accuracy and generalization ability of 

the model. The ecological restoration process 
was shown in Figure 3.  
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Figure 3. Ecological restoration process. 

 
 
Feature engineering was the cornerstone of 
model construction, while the right features 
could significantly improve model performance. 
In this study, the following key environmental 
factors were selected as model inputs, which 
included (1) soil type defined by numeric type 
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characteristics coded by soil texture 
classification; (2) vegetation type identified by 
using One-Hot coding to convert each type of 
vegetation into a single hot vector; (3) 
precipitation determined using average monthly 
precipitation taken directly as a continuous 
numerical feature; (4) temperature using mean 
monthly temperature as a continuous numerical 
feature; and (5) visitor density identified using 
average daily number of visitors per unit area, 
reflecting anthropogenic pressure. Normalization 
of continuous numerical features, such as Z-score 
normalization, ensured that features at different 
scales had equal importance in the model. 
Random forest algorithm improved the stability 
and accuracy of prediction by integrating 
multiple decision trees. Each tree was trained 
independently on randomly selected sample 
subsets and feature subsets, and its prediction 
function could be expressed as equation 6. 
 

1

1
( ) ( ; )

T

t t

t

f x h x
T =

= 
             (6) 

 
where T was the number of trees in the forest.   

t  was the prediction output of tree t. 
th  was 

based on a set of tree parameters 
1

( ; )
T

t t

t

h x
=

  

including tree structure like node split points, 
split features, thresholds, etc. A powerful feature 
of random forests was the feature importance 
assessment. At each split, features were ranked 
according to their split gain such as Gini impurity 
reduction or information gain. The model 
ultimately aggregated the gains of features in all 
trees to determine global importance. The 
specific calculation formula was shown below. 
 

1

1 1

Gain ( )

( )

Gain ( )

T

t i

t
i F T

t j

j t

feature

Importance feature

feature

=

= =

=



       (7) 

 

where 
ifeature  was the gain from splitting in 

tree t. F was the total number of features. 

Through the above assessment, the 
environmental factors that had the most 
influence on the ecological restoration effect 
such as precipitation and visitor density could be 
identified, which might be key variables. The 
features could be further screened, models could 
be optimized to avoid over-fitting and improve 
interpretability. 
 
Personalized repair strategy recommendations 
The fusion of deep learning and reinforcement 
learning provided a dynamic, flexible, and highly 
adaptive decision-making framework that 
included feature representation, model 
architecture, policy optimization, and policy 
execution processes to achieve optimal repair 
policy recommendations for different regions 
and problems. Based on the collected monitoring 
data, a feature vector of the repair area was 
constructed with the characteristics of traditional 
environmental factors, dynamic information of 
spatiotemporal characteristics such as change 
rate and seasonal fluctuation, and human activity 
intensity. To handle these multimodal features, 
embedding was applied to convert the 
categorical features into dense representations 
in a continuous vector space as follows. 
 

( )cate EmbeddingLayer category=
                (8) 

 
where category was the original category feature 

and EmbeddingLayer was the corresponding 

embedding vector. Deep Q-Network (DQN) was 
used as the core algorithm, combining the 
environmental states and policy action selection 
to learn the optimal policy. The model 
architecture consisted of two main parts of 
feature extractor and Q-value network. CNN 
used to process image features such as 
vegetation coverage change maps was combined 
with fully connected layers used to process non-
image features to form a hybrid feature 
representation (Equation 9). Based on the 
feature representation h, the Q value for each 
possible action was predicted through a series of 
fully connected layers shown in equation 10. 
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( ( ) ( )img non imgh ReLU ConvLayer s DenseLayer s −= +
     (9) 

 
( , ) ( )Q s a DenseLayer h=                                (10) 

 
At the heart of reinforcement, learning laid the 
balance between exploration and exploitation. In 
repair strategy recommendation, this meant 
both trying new strategies to discover possible 
better solutions and taking advantage of known 
effective strategies. The ε-greedy policy was used 
to achieve this equilibrium as shown in equation 
11. 
 

random action with probability 

argmax ( , ) otherwise
t

a t

a
Q s a


= 


ò

        (11) 
 
where “random action” was the probability of 
randomly choosing an action in the current state. 

( , )tQ s a decreased with time and depended 

more on the current optimal policy. The 
evaluation of restoration strategies was achieved 
through a well-designed reward function that 
considered long-term ecological restoration 
benefits and cost-effectiveness. Assuming an 
immediate reward, the total return could be 
described by the Bellman equation below. 
 

0

k

t t k

k

R r


+

=

=
           (12) 

 

where 
t kr +

was the discount factor that 

guaranteed a reduction in the present value of 
future rewards. The strategy recommendation 
process included iterative learning and online 
adjustment. Every time an action was performed, 
the Q value was updated according to actual 
effect feedback, and overfitting was reduced 
through experience replay and fixed Q-targets. 
The updated formula was shown as equation 13. 
 

1( , ) ( , ) [ max ( , ) ( , )]t t t t t a t t tQ s a Q s a r Q s a Q s a   +
 + + −       (13) 

 

where   was the learning rate. a' was the 
possible action in the next state. Through the 

deep reinforcement learning framework, the 
optimal repair strategy could be intelligently 
recommended based on the current 
environmental state. In addition, the 
environmental changes over time could be 
learned and adapted to optimize the strategy and 
achieve personalized repair.  
 
Data collection and processing 
 Data collection efforts focused on Machu Picchu 
and its surrounding areas with a timeline 
spanning from 2010 to 2027 with the integration 
of multiple data sources including satellite 
remote sensing data, meteorological data, 
ground survey data, and restoration project 
archives to construct a comprehensive dataset. 
The data preprocessing process strictly followed 
scientific standards including data cleaning, 
standardization, category coding, and feature 
refinement, ensuring the accuracy and reliability 
of the analysis.  
 
 

Results and discussion 
 

Satellite platforms and data collection 
The Landsat 8 and Sentinel-2 satellites were two 
of the most important earth observation 
platforms for remote sensing. Landsat 8 launched 
by the National Aeronautics and Space 
Administration (NASA, USA) in 2013 collected 
high-resolution multispectral images of the 
earth's surface, enabling scientists and 
researchers to monitor changes in land use, 
vegetation, and water resources over time. 
Sentinel-2, part of the European Space Agency's 
(ESA) Copernicus program, was launched in 2015 
and 2017 with Sentinel-2A and Sentinel-2B, 
respectively, which provided high-resolution 
optical imagery with a wide swath width, 
facilitating detailed monitoring of agricultural 
practices, forest management, and 
environmental changes. To assess the 
effectiveness of AI technology in ecological 
restoration, this study combined multispectral 
images from Landsat 8 and Sentinel-2 satellites, 
monthly precipitation and mean temperature 
records   from   nearby   meteorological   stations,
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Table 1. Comparison of sample size before and after data cleaning. 
 

Data type Sample size before cleaning Sample size after cleaning Reduction ratio 

satellite remote sensing 1,200 115 5% 

meteorological 1,200 118 1.67% 

ground survey 100 95 5% 

 
 
Table 2. Overview of cross-validation results. 
 

Model type Folding number Accuracy Precision rate Recall rate F1 score 

Random forest Fold 1 0.87 0.85 0.86 0.86 

Random forest Fold 2 0.89 0.90 0.88 0.89 

Random forest Fold 3 0.86 0.84 0.85 0.84 

Random forest Fold 4 0.88 0.87 0.86 0.86 

Random forest Fold 5 0.90 0.91 0.89 0.90 

Average  0.88 0.87 0.87 0.87 

 
 
ground survey data, and archives of all 
restoration initiatives implemented over the past 
decade. The data underwent rigorous data 
cleansing, standardization, category coding, and 
feature refinement to build a high-quality 
dataset, which contained abundant information 
of vegetation coverage, land use dynamics, soil 
types, vegetation composition, tourist activity 
frequency and provided a solid foundation for 
model validation and application analysis. The 
sample size before and after data cleaning was 
compared (Table 1). The random forest (RF) 
model performed in a 5-fold cross-validation. 
Each fold’s accuracy, precision, recall, F1 scores, 
and their average values were calculated (Table 
2). The average accuracy, precision, recall, and F1 
score were 0.88, 0.87, 0.87, and 0.87, 
respectively, which indicated the stability and 
generalization of the model. 
 
Evaluation of model performance  
(1) Analysis of feature importance 

The feature importance score showed that 
precipitation was the most important feature 
with a score of 0.28. Soil type was next with a 
score of 0.25. The importance scores of visitor 
density, average temperature, and vegetation 
type were 0.20, 0.15, and 0.12, respectively. 
These scores were helpful to identify the 
environmental factors that contributed most to 
model predictions and provided guidance for 
subsequent policy optimization. 
 
(2) Comparative model assessment 
The Scikit-learn library, a globally renowned and 
community-maintained machine learning 
resource (https://scikit-learn.org/), was utilized 
to implement and evaluate three distinct 
machine learning models including random 
forest (RF), support vector machine (SVM), and 
logistic regression. Each model was trained on a 
dataset derived from Sentinel-2 MSI data and 
ground truth information. The RF and SVM 
models         implemented         via         Scikit-learn 

https://scikit-learn.org/
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Table 3. Comparison of urban traffic congestion management system before and after optimization. 
 

Indicators Before optimization After optimization Improvement 

Average commute time (minutes) 45 35 -22.22% 

Traffic delay index 1.25 0.98 -21.60% 

Average vehicle speed (km/h) 20 25 +25.00% 

Air Quality Index (AQI) 85 70 -17.65% 

Public Satisfaction Survey Score (/10) 5.8 7.2 +24.14% 

 
 
demonstrated their capabilities in handling 
complex, high-dimensional data. For 
performance assessment, the area under the 
curve of the receiver operating characteristic 
(AUC-ROC) metric was applied and calculated 
using Scikit-learn’s “roc_auc_score” function, 
providing a scalar value that encapsulated the 
classifiers’ true positive and false positive rates 
across various thresholds, thereby offering a 
comprehensive evaluation of each model’s 
efficacy. The results showed that the RF model 
had an accuracy of 0.87, precision of 0.86, recall 
of 0.86, F1 score of 0.86, and AUC-ROC of 0.92. 
The SVM model performed slightly worse than RF 
with an accuracy of 0.84, precision of 0.83, recall 
of 0.84, F1 score of 0.83, and AUC-ROC of 0.88, 
while the logistic regression model demonstrated 
an accuracy of 0.82, precision of 0.81, recall of 
0.82, F1 score of 0.81, and AUC-ROC of 0.85. The 
results indicated the advantages of the RF model 
over other models. 
 
Assessment of ecological restoration impact  
Vegetation coverage being measured as a 
fraction (0 to 1) increased from 0.30 to 0.65 with 
an improvement of 116.7%. Soil erosion degree 
that was expressed in t/(km²·a) decreased from 
0.25 to 0.10 with a 60% reduction. 
Nephelometric turbidity unit (NTU) is a measure 
of the clarity of water, where a lower value 
indicates clearer water. The results showed that 
water quality index (turbidity) was reduced from 
25 to 10 NTU with a reduction of 60%. The results 
showed that the application of AI technology to 
ecological environment restoration had achieved 
significant improvements. 

Case analysis 
To more intuitively illustrate the process of case 
application and effect analysis, two 
representative scenarios were selected with one 
as the optimization of urban traffic congestion 
management system and the other as the 
promotion and use of agricultural precision 
irrigation system. Both cases aimed to use 
advanced data analytics and intelligent 
algorithms to solve long-standing socio-
economic problems and improve public well-
being and resource efficiency. The results 
showed that, by introducing intelligent signal 
control, real-time road condition prediction, and 
travel suggestions, it not only significantly 
shortened the average commuting time of 
citizens and reduced the traffic delay index, but 
also increased the vehicle speed and reduced the 
air pollution caused by long idle time. In addition, 
public satisfaction with traffic conditions had 
increased significantly, reflecting the positive 
effect of system optimization on improving 
quality of life (Table 3). The extension effect of 
agricultural precision irrigation systems 
demonstrated that, through the integration of 
soil moisture monitoring, meteorological 
prediction, and crop growth model, the system 
realized accurate control of irrigation, effectively 
improved crop yield, and greatly reduced the 
consumption of water resources and pesticides, 
which was of great significance to environmental 
protection and sustainable development (Table 
4). Through the application and effect analysis of 
two cases, the results confirmed that 
technological innovation and intelligent solutions 
had great potential in solving practical problems. 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 19:186-198 

 

197 

 

Table 4. Popularization effect analysis of agricultural precision irrigation system. 
 

Indicators Before promotion After promotion Improvement 

Average crop yield (kg/mu) 3,000 3,500 +16.67% 

Irrigation water consumption (m³/mu) 500 400 -20.00% 

Pesticide usage (kg/mu) 2.5 2.0 -20.00% 

Average annual income growth rate of farmers (%) 2.5 5.0 +100.00% 

Reduction in soil salinization (%) - 10 N/A 

 
 
The optimization of urban traffic congestion 
management system not only relieved traffic 
pressure, but also indirectly improved air quality 
and residents’ life quality. The promotion of 
agricultural precision irrigation system ensured 
food security and promoted efficient utilization 
of resources, further significantly increased 
farmers’ economic benefits, reflecting the broad 
prospects of science and technology enabling 
agriculture. 
 
 

Conclusion 
 

By integrating AI technology with ecological 
restoration strategies, this study demonstrated 
the great potential of technology in modernizing 
environmental governance and improving 
ecological restoration efficiency and 
sustainability. AI-assisted environmental 
monitoring system provided accurate and timely 
information support for environmental 
management through multi-source data fusion 
and intelligent analysis. The ecological 
environment restoration model, especially the 
prediction model based on random forest, not 
only improved the prediction accuracy, but also 
provided scientific basis for formulating targeted 
restoration measures through feature 
importance analysis. A personalized repair 
strategy recommendation framework was 
further proposed, which used deep 
reinforcement learning to realize adaptive 
optimization of strategies, which provided 
innovative paths for solving complex and 
dynamic environmental problems. Empirical 

studies and case studies demonstrated that AI 
technology could significantly improve the 
ecological environment in practical applications 
such as shortening urban commuting time, 
reducing traffic delays, increasing agricultural 
production, while reducing resource 
consumption. These positive results were directly 
related to public well-being and economic 
development. In addition, the case also 
highlighted the role of technology in improving 
public satisfaction and promoting environmental 
quality, providing strong evidence for the 
harmonious coexistence of ecological 
environment protection and social economy. AI-
based ecological environment restoration 
technology was feasible in theory and showed 
strong application potential and significant social 
and economic value in practice. 
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