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Carbon emissions pose significant challenges to sustainable development, driving the need for accurate prediction 
models and effective emission reduction strategies. This study focused on developing a method for predicting 
carbon emissions and optimizing emission reduction strategies. By integrating multi-source data from 2000 to 
2020, encompassing carbon emissions, economic growth, energy consumption, population dynamics, and policy 
factors, the quality of the model input data was ensured through comprehensive preprocessing. Subsequently, a 
Gradient Boosting Machine-Deep Neural Network (GBM-DNN) hybrid model was utilized to forecast carbon 
emission trends with optimal hyperparameters determined through cross-validation. The model's predictions, 
both short- and long-term, accurately captured the trends in carbon emissions. Furthermore, a multi-objective 
genetic algorithm was employed to explore different emission reduction paths, comparing the allocation of 
strategies related to energy efficiency improvements, renewable energy usage, carbon taxation, and their 
respective emission reduction effects, economic costs, and social impacts. A comprehensive evaluation of the 
environmental and economic impacts of various emission reduction strategies was conducted, providing a 
quantitative basis for strategic decision-making. 
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Introduction 
 
Global climate change has been one of the most 
severe challenges that mankind is facing now. 
According to the International Energy Agency, 
the energy sector accounts for 73% of global 
greenhouse gas emissions with the combustion 
of coal, oil, and natural gas being the main 
sources [1]. This situation has not only 
aggravated global warming, but also triggered a 
series of chain reactions such as frequent 
occurrence of extreme weather events and sea 
level rise, which seriously threatens the 
ecological balance and sustainable development 

of human society. In response to the crisis, 
countries around the world have responded to 
the Paris Agreement's call to limit the rise in 
global average temperatures to 1.5°C above pre-
industrial levels, which requires significant 
reductions in carbon emissions [2, 3]. 
 
In recent years, the rapid development of big 
data and artificial intelligence technology has 
brought about revolutionary changes in the field 
of carbon emission prediction. As a powerful 
artificial intelligence technology, deep learning is 
gradually becoming an important tool for carbon 
emission prediction with its excellent data 
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processing ability and nonlinear modeling ability. 
Models, such as long-term and short-term 
memory networks (LSTM), have significant 
advantages in capturing long-term dependencies 
in time series data. In addition, multi-objective 
optimization algorithms, such as genetic 
algorithm and particle swarm optimization 
algorithm, have been widely used to explore the 
optimal emission reduction path [4, 5]. Despite 
significant progress in the field of carbon 
emission prediction and optimization of emission 
reduction strategies, current research still faces 
many challenges [6, 7]. The first is the issue of 
data including their availability, quality, and 
coverage, especially for developing countries. 
Secondly, the generalization ability of the model 
is also a problem that needs to be solved. In 
addition, the trade-off problem in multi-objective 
optimization, that is how to find the best balance 
point among economic benefit, environmental 
benefit, and social benefit, is also a topic that 
needs to be further explored in future research 
[8, 9]. 
 
The core objectives of this study focused on three 
interrelated aspects, which included to develop 
and validate a new deep learning model to 
achieve high-precision prediction of future 
carbon emission trends in specific geographic 
regions, to explore the deep integration of deep 
learning techniques and optimization algorithms 
to build a comprehensive strategy optimization 
framework, and to ensure that the proposed 
emission reduction measures effectively 
promote green economy development, 
ecological balance, and social well-being [10, 11]. 
The research developed a new deep learning 
model to integrate multi-dimensional data 
sources including macroeconomic indicators, 
energy consumption patterns, policy and 
regulatory dynamics, etc., while combined deep 
learning technology with optimization algorithms 
to build a strategic optimization framework, and 
further, improved the accuracy and practicality of 
the model through interdisciplinary cooperation 
[12, 13]. This study provided a new and efficient 
prediction method for the field of carbon 
emission prediction, which would help to 

improve the prediction accuracy and practicality.  
It also promoted the deep integration of deep 
learning technology and optimization algorithm 
in the field of carbon emission prediction and 
emission reduction strategy optimization and 
provided new perspectives and methods for 
research in related fields. Further, this study 
provided strong support for the realization of 
global carbon emission reduction targets and 
sustainable development and helped mankind 
cope with the challenge of climate change [14]. 
 
 

Materials and methods 
 

Data resources 
Carbon emission data mainly came from 
government public reports, databases of 
international organizations, and research results 
of scientific research institutions. The World 
Bank's World Development Indicators (WDI) 
database (https://data.worldbank.org/indicator/ 
EN.ATM.CO2E.KT) provided historical and 
projected CO2 emissions data for countries 
including total, per capita, and by sector. In 
addition, the International Energy Agency's (IEA) 
Energy Statistics (https://www.iea.org/data-and-
statistics/statistics-databases/energy-balances)  
and the Global Carbon Project 
(https://globalcarbonproject.org/carbonbudget)  
provided detailed carbon emissions data and 
analysis. For specific country or regional research, 
official data published by the National Bureau of 
Statistics and environmental protection 
departments were used. For instance, in the case 
of China, the National Bureau of Statistics 
published annual statistical yearbooks 
(http://www.stats.gov.cn/tjsj/ndsj/), and the 
Ministry of Ecology and Environment provided 
policy documents and regulations 
(http://www.mee.gov.cn/hjzl/) [15, 16]. 
Economic development data, which covered GDP, 
per capita income, employment rate, industrial 
structure, and many other aspects, were 
obtained from the databases of the World Bank 
WDI, the United Nations Statistics Division 
(UNSD), and the Organization for Economic 
Cooperation and Development (OECD). For more 
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Figure 1. Model framework. 

 
 
micro-level economic activities such as industry 
output, corporate financial statements, etc., the 
commercial databases such as Thomson Reuters 
and Wind Information were employed [17, 18]. 
For this study, the historical data from the past 30 
years including macroeconomic indicators, 
energy consumption data, policy documents, etc. 
were collected with a total of approximately 
100,000 data points, of which 80% was used for 
model training and the remaining 20% for model 
validation. The training data used in this study 
covered a country's carbon emissions, economic 
growth indicators (such as GDP), energy 
consumption (including coal, oil, natural gas, and 
renewable energy consumption), population data, 
and policy changes from 2000 to 2020. Data were 
mainly from the International Energy Agency 
(IEA), the World Bank, and national statistical 
offices. Data preprocessing included missing 
value processing (forward filling or backward 
filling), outlier detection (based on IQR method), 
and normalization processing (Z-score 
normalization), which ensured the quality of data 
and the effectiveness of model training. Research 
results summarized the key variables in the 
training dataset used in this study, covering time 
series information, carbon emissions, economic 
development indicators, detailed composition of 
energy consumption, population data, and policy 

factors from the reliable data sources including 
international authorities. The preprocessing 
steps ensured data quality, which included 
handling missing values, detecting and handling 
outliers, and normalizing, laying a solid 
foundation for model training. 
  
Deep learning model construction and training 
When exploring deep learning applications for 
carbon emission reduction strategies in a green 
economy, model selection should consider data 
characteristics and the complexity of prediction 
tasks. Because carbon emission prediction 
involved time series analysis, multivariate 
interaction, and nonlinear relationship, this study 
adopted a hybrid model of Gradient Boosting 
Machine (GBM) and Deep Neural Network (DNN) 
in ensemble learning method. GBM exceled at 
dealing with complex interactions between 
features, while DNN exceled at capturing 
nonlinear relationships. The combination of the 
two models enhanced the generalization and 
prediction accuracy of the model [19]. The 
specific binding framework of DNN and GBM was 
shown in Figure 1. The gradient lifters were used 
as base learners to reduce prediction errors step 
by step through iteratively adding weak learners 
such as decision trees. Each new tree focused on 
the residuals of the previous model, allowing the 
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entire model to gradually approximate the true 
distribution. The key parameters of GBM 
included learning rate, number of trees, 
maximum depth of trees, etc., which needed to 
be optimized according to the results of cross-
validation. A deep neural network model was 
then constructed, which consisted of multiple 
hidden layers with each layer containing multiple 
neurons. The input layer of DNN received the 
preprocessed eigenvectors. After a series of 
weight matrix transformations (W) and nonlinear 
activation functions such as ReLU, the final 
output layer gave the predicted values [20]. The 
model was expressed as follows. 
 

1 1 1 1( ( ... ( ) ) )n n n ny f W W W X b b b − −= + + +
     (1) 

 
where X was the input feature. W and b were the 
weight matrix and bias term for the ith layer, 
respectively.  f was the activation function for the 
output layer such as linear function or sigmoid, 
depending on the prediction task [20]. The 
selection and optimization of hyperparameters 
are critical to the performance of the model. In 
this study, Bayesian Optimization was used as the 
super parameter optimization method. 
Compared with grid search and random search, 
Bayesian Optimization found the optimal 
configuration by establishing a proxy model of 
the objective function with fewer experiments. 
Specific to the proposed hybrid model, the key 
hyperparameters to adjust included (1) the 
number of hidden layers and nodes of DNN, 
which determined the complexity of the network. 
Too many layers or nodes might lead to 
overfitting, and too few might fail to capture 
complex patterns in the data; (2) learning rate 
that controlled the step size of parameter update. 
If the initial learning rate was too high, it might 
cause unstable training, otherwise it would 
prolong the training time; (3) the number and 
depth of the tree of the gradient hoist, which 
affected the expression ability and training 
efficiency of the model and needed to weigh the 
prediction performance and the risk of overfitting; 
(4) regularization strength such as L1 or L2 
regularization used to control model complexity 

and prevent overfitting [21]. The mean square 
error (MSE) was chosen as the primary evaluation 
criterion for loss functions because it was 
sensitive to errors between model predictions 
and actual values and was widely used in 
regression problems. For DNN part, linear 
activation function was adopted as output layer 
activation function to directly output prediction 
value considering continuous property of 
prediction value. Adam was chosen as the 
optimization algorithm, which combined the 
advantages of momentum and RMSProp, 
adjusted the learning rate of each parameter 
automatically, avoided local optimal solution 
effectively, and accelerated convergence speed. 
Adam estimated the first moment (mean) and 
second moment (uncentered variance) of the 
gradient by maintaining two empirical variances 
as shown below [22].  
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where,    was the gradient. 
1tv −

  was the first 

and second momentum estimates, respectively. 

tm  was the decay rate.   was the learning rate. 

ò   was a small constant added for numerical 
stability [23]. 5-fold cross validation was applied 
to ensure the generalization ability of the model. 
The dataset was randomly divided into five 
subsets with one subset at a time as the test set 
and the remaining four subsets being combined 
as the training set. Each subset was used as a test. 
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The performance of the model was based on the 
average of five iterations. This approach reduced 
the chance of data partitioning and provided a 
more robust model performance assessment [24]. 
In DNNs, inferring feature importance directly 
from the weight matrix was more complicated 
because the weight values depended not only on 
the features themselves but also on the network 
structure and other weight interactions in the 
learning process. A simplified approach was to 
estimate the importance of features initially by 
analyzing the sum of absolute values of the 
weights from the input layer to the output layer. 
To evaluate the importance of the jth feature, the 
sum of the absolute values of the weights of all 
the output neurons connected to it was 
calculated as follows. 

 
1

( )

1

| |
lN

DNN l

j ij

i

FI W
+

=

=
                                                  (7) 

 

where ( )l

ijW  was the number of neurons in layer 

l+1. Although this approach was simple and 
intuitive, it ignored the complexity of feature 
interactions in deep learning and was therefore 
often used as an aid to an initial understanding of 
feature contributions. In GBM, feature 
importance was directly related to the gain that 
each feature contributed across all decision trees, 
i.e., the performance improvement that the 
model gained by segmenting that feature. 
Specifically, for a split node in the decision tree, 
the gain of feature j could be defined as the 
decrease in the loss function before and after the 
split. The importance of a feature j in the entire 

model GBM

jFI  could be calculated as the average 

of the gains in all trees using that feature as a split 
node [25].  
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where K was the number of trees, denoting the 
kth tree. t was the node in the tree with feature j 
as the splitting condition. 

Through the above method, the relative 
importance ranking of each feature in the 
prediction process of the model could be 
obtained. Feature importance analysis could 
identify key influencing factors and guide 
subsequent data acquisition and model 
optimization. For identified high-impact features, 
higher quality or higher resolution data collection 
might be considered [26, 27].  
 
Statistical analysis 
SPSS 27.0 (IBM, Armonk, New York, USA) was 
employed for statistical analysis of this study. The 
R-score was calculated as a composite index that 
considered both the environmental impact 
(measured by total emission reductions and cost 
per ton of CO2) and the economic costs 
(investment and other direct expenses), as well 
as the implementation difficulty (social impact 
scores reflecting policy acceptance and technical 
feasibility).  
 
 

Results and discussion 
 

Carbon emission trend projections 
The proposed GBM-DNN hybrid model was used 
to predict carbon emission trends. During model 
training, the optimal combination of 
hyperparameters was determined through cross-
validation with 5% discount [28, 29]. The 
configuration of optimal hyperparameters was 
used to train the hybrid model (GBM-DNN), 
which was carefully tuned for cross-validation 
with 50% off to optimize model performance. 
The number of hidden layer nodes and learning 
rate of DNN, as well as the number of trees and 
maximum depth of trees of GBM were included 
to ensure that the model was neither too 
complex to overfit nor too simple to ignore 
important features [30, 31]. The relationship 
between predicted and actual CO2 emissions was 
plotted (Figure 2). The results showed that there 
were some differences between the predicted 
and actual values for most of the time, but the 
overall trend was similar. In the time periods of 
May, July, and August 2022, the predicted values 
appeared  to  be  higher  than  the  actual  values,  
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Figure 2. Short-term prediction effect. The vertical axis represented CO2 emissions.  

 
 

 
 
Figure 3. Long-term prediction effect. The vertical axis represented CO2 emissions. 

 
 
while, in some other months such as February 
and March 2022, the predicted values were lower 
than the actual values. In addition, both 
projected and actual CO2 emissions 
demonstrated an upward trend over time. 
However, in some cases such as October 2022, 
the forecasts were lower than the actual values, 
while the forecasts were usually higher than the 
actual values. A long-term prediction effect was 
shown in Figure 3. The value of "Predicted carbon 
dioxide emissions" was smaller than that of 
"Actual carbon dioxide emissions", and the 
difference between the two values gradually 
increased.  
 
Simulation of emission reduction strategies 

Based on the prediction results, multi-objective 
genetic algorithm (NSGA-II) was used to explore 
different emission reduction paths. The objective 
function consisted of minimizing economic costs, 
maximizing carbon emission reductions, and 
maintaining social stability such as maintaining 
the unemployment under a certain threshold. 
Strategy variables included improving energy 
efficiency, increasing the share of renewable 
energy, and imposing carbon taxes. Several 
emission reduction strategy options were 
explored based on multi-objective genetic 
algorithm and compared the allocation of 
different strategies in terms of energy efficiency 
improvement, renewable energy use, carbon tax, 
expected  emission  reduction  effects,  economic 
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Table 1. Comparison of optimization strategies. 
 

Strategy 
Energy 

efficiency 
Renewables 

share 
Carbon 

tax 
Projected emission 
reductions (Mt CO2) 

Estimated 
economic cost 

(billion ¥) 

Social 
impact 
score 

S1 15% 10% 50 -120 250 8.5 

S2 10% 20% 70 -150 300 7.8 

S3 20% 5% 30 -80 180 9.2 

 
 
Table 2. Integrated environmental and economic impact assessment. 
 

Strategy 
Total projected 

emission reductions 
(Mt CO2) 

Total 
economic cost 

(billion ¥) 

Emission 
reduction 

cost/ton CO2 (¥) 

Environmental 
benefit index  

(1-10) 

Economic 
burden 

index (1-10) 

S1 -120 250 20.83 7.5 5.5 

S2 -150 300 20 8 6.5 

S3 -80 180 22.5 7 4.5 

 
 
costs, and social impacts, which provided 
decision makers with a visual comparison of 
different emission reduction pathways, allowing 
for a comprehensive consideration of economic 
benefits and social acceptability (Table 1). 
 
Policy evaluation 
A comprehensive assessment of the proposed 
strategy that considered the environmental 
impact (emission reductions), the economic costs 
(direct costs such as investment, tax 
adjustments, etc.), and the difficulty of 
implementation (social impact scores that 
reflected policy acceptance, technical feasibility, 
etc.) was conducted. Three strategies named S1, 
S2, and S3 that represented three distinct 
strategies for emissions reduction were 
compared in this study. Each strategy 
encompassed a unique combination of 
environmental impact, economic costs, and 
implementation difficulty, aiming to balance 
these factors effectively. The results showed 
that, although S1 had lower economic costs, its 
emission reduction effect and social impact score 

were slightly lower than that of S3, while S3 had 
higher environmental benefits and social 
acceptance, but required a larger initial 
investment (Table 2). The performances of 
different emission reduction strategies in terms 
of environmental benefits, economic costs, and 
implementation difficulties were 
comprehensively evaluated, which provided 
quantitative basis for strategy selection through 
quantitative indicators to clearly identify which 
strategy had the least impact on the economy 
while achieving emission reduction targets and 
was easy to implement, providing scientific basis 
for policy planning [30, 31]. LSTM, as a common 
model for time series prediction, performed well 
in this task, but its MSE and MAE were relatively 
high, indicating that its prediction accuracy was 
slightly inferior to GBM-DNN hybrid model (Table 
3). XGBoost and random forest as 
representatives of reinforcement learning and 
ensemble learning performed well, but lag 
significantly in MSE and MAE indicators, 
indicating that accuracy needed to be improved. 
As  a  benchmark  model,   the   ability   of   linear 
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Table 3. Comparative analysis of prediction effect of models. 
 

Model name MSE MAE R² score 

GBM-DNN hybrid model 100.56 2.15 0.89 

LSTM 105.2 3.1 0.86 

XGBoost 120.1 4.5 0.83 

random forest 150.3 5.8 0.77 

linear regression 200.7 8.2 not apply 

 
 
regression model to deal with complex data 
relations was limited because of its simplicity. All 
indicators were at the bottom, reflecting the 
limitations of nonlinear models in complex 
forecasting tasks. The GBM-DNN hybrid model 
was constructed to predict carbon emission 
trends successfully. The effectiveness and 
superiority of the hybrid model were verified by 
comparing it with other models. The prediction 
results showed that the model could effectively 
track and predict fluctuations and trends of 
carbon emissions in both short and long term, 
providing timely and forward-looking 
information support for decision makers. In 
terms of emission reduction strategies, this study 
explored different emission reduction paths by 
using multi-objective genetic algorithm and 
provided comprehensive strategy selection basis 
for decision-makers by comprehensively 
evaluating the environmental benefits, economic 
costs, and implementation difficulties of 
different strategies. The results showed that 
there were significant differences in emission 
reduction effect, economic cost, and social 
impact among different emission reduction 
strategies, and decision makers needed to weigh 
and choose according to specific circumstances. 
The results of this study have important 
reference value for policy makers. 
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