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Tumors are one of the main causes of global mortality, and early diagnosis and precise treatment affect the 
survival rate of patients. Traditional image analysis relies on the professional knowledge and experience of 
radiologists. Manually labeling and analyzing tumor cells is laborious and subjective, which may lead to variability 
and inconsistency in diagnostic results. This study proposed a convolutional model based on a single-stage object 
detector. To address the shortcomings of the single-stage object detector model, the receptive field was 
introduced to improve the depth of information extraction, and an attention mechanism was also introduced to 
enhance its focus. The model was used to recognize pathological tissue slice images and classify tumors. The 
results indicated that, when the dataset size reached around 200, the performance of each model reached its 
maximum and showed convergence. When the dataset size was 500, the accuracy values of the single-stage target 
detector model, the single-stage target detector model based on receptive field, and the proposed model were 
0.89, 0.91, and 0.98 with root mean square errors of 0.15, 0.14, and 0.09, respectively. Among the three models, 
the recognition accuracies of the proposed model for breast cancer, lung cancer, brain cancer, kidney cancer, head 
and neck cancer, and liver cancer were 92.3%, 93.9%, 88.8%, 82.2%, 93.1%, and 83.2%, respectively. The average 
recognition time for tumors was within 3 seconds. The proposed model demonstrated outstanding performance 
across all types of tumors, thereby providing an effective solution for medical image recognition. 
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Introduction 
 
With the rapid development of medical imaging 
technology, medical images are playing an 
increasingly important role in disease diagnosis 
and treatment. In particular, the accurate 
imaging analysis of tumor cells is of great 
importance for the early diagnosis of cancer and 
the subsequent development of effective 
treatment plans that will facilitate the patient's 
recovery. However, traditional manual analysis 

methods are not only time-consuming and labor-
intensive but also susceptible to subjective 
factors, resulting in insufficient accuracy and 
consistency of diagnostic results [1, 2]. In recent 
years, Convolutional neural network (CNN) has 
made significant progress in computer vision. 
With its powerful feature extraction and pattern 
recognition capabilities, CNN has shown great 
potential in medical image analysis. By training 
on a large amount of medical image data, CNN 
can automatically learn and extract complex 

mailto:whytyl0310@126.com


Journal of Biotech Research [ISSN: 1944-3285] 2024; 19:258-268 

 

259 

 

features, thereby achieving efficient recognition 
and accurate classification of tumor cells.  
 
Yilmaz found that the traditional synthetic 
variable ratio image fusion algorithm (SVRIFA) 
could not meet the requirements of image 
fusion. In response to this issue, researchers 
proposed genetic algorithms to improve 
traditional SVRIFA. The model demonstrated 
robust performance in both single-sensor and 
multi-sensor images, exhibiting consistent 
accuracy and reliability across different imaging 
modalities [3]. You et al. proposed a multi-focus 
image fusion method, which combined with the 
local standard deviation of the Laplacian image 
corresponding to the source image and further 
enhanced through a guided filter to fuse the 
image [4]. Long et al. found that the existing 
method for obtaining high-resolution images was 
to fuse low-resolution hyperspectral images with 
high-resolution multi-spectral images. However, 
this method required decomposing the target 
image into a multi-factor matrix or tensor before 
fusion and was not suitable for real-time scenes. 
In response to this issue, a new non-factorization 
model was proposed, which could directly 
estimate the resolution image of the target 
image, reduce the analysis process of 
intermediate variables, effectively save 
computational time, and improve the stability of 
fusion [5]. CNN is a popular technology in 
computer science. Zhang et al. found that road 
conditions were essential for traffic flow 
efficiency and proposed an automatic 
classification method for winter road conditions 
using CNN to ensure the safety of traffic 
operations. This method could effectively classify 
different road surfaces and had good 
performance [6]. Miao et al. found it difficult to 
extract fault features from multiple 
heterogeneous sensor data and therefore 
proposed a feature-enhanced channel CNN for 
robot fault diagnosis. It also introduced a feature 
enhancement layer that highlighted important 
features by adaptively weighting feature maps 
(Fmap). This method exhibited excellent accuracy 
and robustness in fault diagnosis [7]. Xie et al. 
found that the detection performance of LiDAR 

points could be severely affected when there was 
noise or damage. In response to this, a 3D object 
detection approach that fuses point-cloud with 
2D semantic segmentation was proposed to 
enhance feature representation in difficult 
situations. The average accuracy of this model in 
3D object detection had significantly improved by 
about 11.13% [8]. On pathological tissue slice 
images, the target of tumor cells is relatively 
small and difficult to detect. Small target 
detection (STD) that refers to detecting and 
locating smaller targets in an image can precisely 
address this problem. Compared to large object 
detection, STD presents greater challenges, 
mainly due to the smaller area occupied by small 
targets in the image, less pixel information, and 
the susceptibility to noise and background 
interference [9]. In addition, small targets 
typically have lower contrast and resolution in 
the image, making the detection process more 
complex. 
 
Many scholars have studied CNN and image 
recognition. However, these studies have 
adopted a single algorithm model and have not 
made improvements to address the 
shortcomings of the model. This study 
innovatively proposed a convolutional model 
based on single shot multi-box detector (SSD) to 
identify the tumor types confirmed by analyzing 
pathological tissue slice images. In response to 
the shortcomings of the SSD, a receptive field 
block (RFB) and an attention mechanism (AM) 
were introduced to improve their performance, 
aiming to provide a reliable tumor recognition 
and detection method. This research would 
provide an effective solution for medical image 
recognition, thereby promoting the development 
of intelligent healthcare and improving the 
accuracy and efficiency of tumor diagnosis. 
 
 

Materials and methods 
 
Automatic recognition model for tumor cells 
based on RFB 
This study used SSD as the basic model. In the 
feature extraction network of the SSD model, the 
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shallow convolutional layer mainly extracted the 
detailed information of the image, while the 
deep layer mainly extracted abstract 
information. The SSD algorithm utilized feature 
information at different scales to combine 
detailed information with abstract information 
[10]. The SSD is based on the VGG16 visual 
geometry group network (VGG Net) as a whole. 
VGG Net is a deep CNN architecture that has a 
concise and deep structure, smaller 
convolutional kernels, and a deep network 
structure. The two common variants of VGG Net 
are VGG16 and VGG19, which contain 16 and 19 
convolutional layers. The additional layers in 
VGG19 introduce more parameters, making the 
model larger and computationally demanding. In 
medical imaging, datasets are usually very large 
and involve high-resolution images, so training 
more complex models like VGG19 requires 
significantly more computing resources and time. 
Therefore, this study selected VGG16, which 
consisted of 16 convolutional layers and fully 
connected layers (FCLs) (Figure 1). The input size 
of VGG16 was shown in equation (1). 
 

in in inP H W D=    (1) 

 

where inH , inW , and inD  were the height, 

width, and depth of the input image, 
respectively. P  was the input size.  
 
 

 

 
Figure 1. VGG16 network model diagram. 

 
 
The output height of the convolution operation 
of the convolutional layer was given by equation 
(2). 
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where outH  was the output image’s height. F  

was the convolution kernel’s size. P  was 

padding. S  was the convolution’s stride. The 

output width of the convolution operation was 
shown in equation (3). 
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where outW  was the width of the output image 

[11]. The pooling operation of the pooling layer 
was as follows. 
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where D  was the pooling window’s size. H  
was the stride of pooling. The SSD algorithm sets 
prior boxes with different scales for different 
Fmaps, allowing each Fmap to focus on detecting 
targets at its specific scale. However, neural 
networks mainly detect large targets and ignore 
small objects, resulting in a lower success rate for 
detecting small objects [12]. In addition, due to 
the low-resolution of small targets, the image is 
relatively blurry and carries too little information, 
resulting in weak representation ability. 
Therefore, an RFB module based on multi-scale 
feature fusion was introduced to enhance the 
detection capability of the model. The proposed 
improved RFB module was mainly divided into a 
multi-branch convolution module and a dilated 
convolution module with the multi-branch 
convolution module expanding the RFB and 
enhancing the network's ability to capture 
features of diverse scales by introducing multiple 
parallel convolution branches, each using 
convolution kernels of distinctive sizes and 
shapes. By simultaneously extracting features 
through multiple convolutional branches, the 
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width of the network was increased, and each 
branch used different convolution kernels to get 
features of various scales that could be obtained 
by fusing the features of multiple branches 
through concatenation or weighted fusion. The 
dilated convolution module expanded the RFB of 
convolution operations by introducing holes in 
the convolution kernel, thereby increasing the 
RFB size without increasing the parameters and 
computational complexity [13]. Compared to 
regular convolution, dilated convolution could 
increase RFB while maintaining the same number 
of parameters, generating higher-resolution 
Fmaps. By adding different convolutional layers 
of RFB through the RFB module, the feature 
extraction network could obtain more contextual 
information (Figure 2). 
 
 

 

 
Figure 2. Network structure of RFB module. 

 
 
The loss function selection of the model added 
the position error and confidence error, which 
matched the prior box with the annotation box. 
When the intersection-to-union ratio between 
the two was greater than or equal to 0.5, it could 
be determined that they were matched and 
expressed as follows. 

 
1

( , , , ) ( ( , ) ( , , ))conf loeL x c l g L x c L x l g
N

= +        (5) 

 where confL  and locL  were the error loss of 

confidence and position. N  was the number of 

prior boxes. c  and x  were real and predicted 

category labels. l  and g  were the predicted and 

actual bounding box positions.   was the 
weight factor of position error loss and 
confidence error loss, usually defaulted to 1. The 
expression for position loss was given below. 
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where ,

p

i jx  was whether the i-th predicted box 

matched the j-th true box concerning category k. 
pos  was all positive samples. m  was the overall 

range of the default box. 
m

il  was the prediction 

box. ˆ
m

jg  was the position of the real box. The 

purpose of using a loss function was to correct 
the significant discrepancy between the 
predicted and the true boxes. The confidence 
loss part was calculated in equation (7). 
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where ,
ˆlog( )p p

i j ix c  was the same as ,

p

i jx . 
0ˆ( )ic  

representing the situation where there was no 
real target object in the prediction box. The final 
algorithm process was shown in Figure 3. The 
neural network consisted of multiple 
components including convolution, batch 
normalization, and feature fusion modules. The 
input of the network went through the first set of 
convolutional layers Conv4_3, and then features 
were enhanced through three RFB modules. 
These modules could increase the RFB and 
improve the recognition capacity of objects in 
images. The Fmap was then spatially transformed 
through ConvID Interp layers to meet the input 
requirements of subsequent layers. Afterward, 
the Fmaps were fed into another set of 
convolutional layers, which further processed the 
features enhanced by the RFB module. The 
subsequent feature fusion was achieved through 
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Figure 3. Overall structure of the algorithm. 
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Figure 4. Structure of channel attention module. 

 
 
connection operations, which combined Fmaps 
from different layers to capture more levels of 
information and details. The processed Fmap was 
fed into the prediction layer, which was 
responsible for outputting the final recognition 
result. 
 
Tumor cell automatic recognition model based 
on AM and CNN 
The lack of surrounding objects in weak lateral 
areas of the observed image made it difficult to 
identify and highlight the features of small 
targets. Therefore, AM was introduced into the 
RFB-based tumor cell automatic recognition 
model to simulate the human visual attention 
process, allowing CNN to selectively concentrate 
on specific parts of the input [14]. Usually, AM 
could be divided into two types including channel 
AM and spatial AM. Channel AM mainly focused 
on the channel dimension of Fmaps to 
dynamically adjust the importance of different 

channels [15, 16]. This method learned a set of 
channel weights or activations to enable the 
network to adaptively and selectively enhance or 
suppress the response of each channel. The 
structure of the Channel Attention (CA) module 
included a global pooling layer, an FCL, and an 
activation function. The global pooling layer was 
used to capture global information, while the FCL 
was used to generate CA weights, and the 
activation function introduced nonlinear 
transformations. In the workflow, each input 
Fmap was globally pooled, and the CA weights 
were obtained through an FCL. Then, an 
activation function was utilized for nonlinear 
transformation. The CA weights were multiplied 
by the original map to gain an enhanced feature 
(Figure 4). The final Spatial Attention (SA) feature 
obtained through the activation function was 
shown in equation (8). 
 

max( ) mo ( )c c

C avM F Sig id F F = +       (8) 
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Figure 5. CBAM network. 

 
 

where ( )CM F  was the final CA feature. 
max

cF   

was the Fmap obtained after global pooling. c

avF   

was the Fmap obtained after average pooling. 
The attention features obtained through the CA 
module were expressed in equation (9). 
 

( )C CF M F F=         (9) 

 
where F  was the input Fmap. Spatial AM was a 
method used to enhance the attention and 
understanding ability of neural networks on the 
spatial structure of input data, which mainly 
focused on the spatial dimension of input data. In 
spatial AM, the model learned to dynamically 
adjust the importance of different spatial 
positions to selectively focus on or ignore 
information in specific regions. The structure of 
the SA module was to input feature values for 
global maximum pooling (GMP) and global 
average pooling (GAP) in the channel dimension, 
respectively, to obtain max pooling feature 
values and average pooling feature values. The 
two features were concatenated to obtain an 
Fmap, which was then input into a convolutional 
layer for dimensionality reduction to obtain an 
output Fmap. Then, the Sigmoid was utilized to 

activate, and the final CA feature ( )SM F  was 

calculated as shown in equation (10) [17]. 
 

( ) ( )S SM F Sigmoid F =    (10) 

 

where 
SF   was the Fmap obtained through 

dimensionality reduction. The attention features 
obtained through the SA module were calculated 
in equation (11). 
 

( )S S CF M F F=      (11) 

 
where Fc was the feature gained through the SA 
module. This study adopted a convolutional block 
attention module (CBAM) network. The data 
were first input into the model, and two feature 
descriptions were generated through GAP and 
GMP, respectively. The features after GAP and 
GMP were processed through a shared FCL to 
generate two CA maps. The final CA weights were 
obtained by adding the attention maps of two 
channels and using the Sigmoid. The CA weight 
was multiplied by the input Fmap channel by 
channel to gain the weighted Fmap [18, 19]. GAP 
and GMP were performed on the channel-
weighted Fmaps, compressing along the channel 
dimension, and two spatial Fmaps were 
generated. These two maps were connected 
along the channel dimension and processed 
through a convolutional layer to generate an SA 
map [20] (Figure 5).  
 
To obtain the final SA weight through Sigmoid, 
the SA weight with the channel-weighted Fmap 
element was multiplied by the element to obtain 
the final output Fmap. The structure of the model 
introducing AM was shown in Figure 6. The 
network structure started from the input image 
and sequentially extracted features through 
multiple convolutional layers, batch 
normalization, and ReLU functions. The feature 
learning was enhanced, focusing on important 
regions through RFB and attention modules. The 
features were fused through connection 
operations, and the final output was the 
processed image. 
 
Hardware and data resources 
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Figure 6. Overall structure of algorithm model. 

 
 
The hardware used in this study included Intel 
Core i5-13600KF CPU, NVIDIA Geforce RTX4090 
GPU, 24 GB graphics memory, and 32 GB 
memory. The employed datasets were The 
Cancer Imaging Archive (TCIA) 
(https://www.cancerimagingarchive.net/) and 
the Cameron Grand Challenge (CGC) 
(https://camelyon16.grand-challenge.org/). TCIA 
contained data from different cancer types and 
covered cancer cases at different stages and 
types. Many image data were accompanied by 
detailed annotations from radiologists and other 
medical experts including tumor localization, 
size, and sometimes pathological information. 
CGC was a public dataset focusing on 
pathological image analysis of breast cancer, 
which contained a lot of cell-level details. The 
image contained marked tumor areas by experts. 
To validate the proposed model in this study, the 
Faster Region CNN (FR-CNN) 
(https://paperswithcode.com/method/faster-r-
cnn) and Mask Region CNN (MR-CNN) 
(https://github.com/matterport/Mask_RCNN) 
were employed to compare with the proposed 
model. 
 
 

Results and discussion 
 

Performance analysis of tumor cell automatic 
recognition model based on RFB 

The results of simulation recognition accuracy 
(ACC) of RFB-SSD and SSD, FR-CNN and MR-CNN 
demonstrated that, as the dataset increased, the 
accuracy also increased. When the dataset 
reached 1,000 and 2,000, the performance of the 
model tended to be stabilized. When the dataset 
was 3,000, the ACC of RFB-SSD and SSD models 
were 97% and 94%, respectively (Figure 7a), 
while the ACC of FR-CNN and MR-CNN models 
were 81% and 78%, respectively (Figure 7b). The 
results indicated that RFB-SSD had excellent ACC. 
The comparison of identifying different types of 
tumors in the TCIA dataset showed that, among 
the various models, RFB-SSD model had the 
lowest recognition time for various tumors 
(Figure 8a). The recognition time for lung cancer 
was the longest one with the recognition times of 
3.7 s, 4.2 s, 4.8 s, and 5.3 s for RFB-SSD, SSD, FR-
CNN, and MR-CNN, respectively. The recognition 
time for liver cancer was the shortest with 1.5 s, 
2.2 s, 2.4 s, and 2.7 s for RFB-SSD, SSD, FR-CNN, 
and MR-CNN, respectively. RFB-SSD showed the 
highest recognition ACC for various tumors. 
Among them, the recognition ACC for liver cancer 
was the highest one with the recognition ACCs of 
0.98, 0.94, 0.89, and 0.87 for RFB-SSD, SSD, FR-
CNN, and MR-CNN, respectively (Figure 8b). The 
results confirmed that the performance of RFB-
SSD model was the most outstanding one. In the 
CGC dataset, the comprehensive performance of 
each   model   was   analyzed,   and   the   results 

https://www.cancerimagingarchive.net/
https://camelyon16.grand-challenge.org/
https://paperswithcode.com/method/faster-r-cnn
https://paperswithcode.com/method/faster-r-cnn
https://github.com/matterport/Mask_RCNN
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Figure 7. Comparison of accuracy of different models. 
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Figure 8. Recognition time and accuracy of various models. A to F represented breast, lung, brain, kidney, head and neck, and liver cancers, 
respectively. 

 
 
showed that, among the six types of tumors, each 
model had a higher recognition rate for head and 
neck cancer and the lowest recognition rate for 
renal cancer. RFB-SSD demonstrated excellent 
model performance with recognition ACC of 
92.6%, 94.6%, 89.4%, 82.8%, 93.6%, and 83.8% 

for breast, lung, brain, kidney, head and neck, 
and liver cancers, respectively. Among various 
methods, MR-CNN had the lowest recognition 
ACC, the highest root mean square error (RMSE) 
value, and the longest detection time. RFB-SSD 
had   the   highest   recognition   ACC,   the   lowest 
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Table 1. Comprehensive performance comparison of various models. 
 

Type 
MR-CNN FR-CNN SSD RFB-SSD 

ACC RMSE Time (ms) ACC RMSE Time (ms) ACC RMSE Time (ms) ACC RMSE Time (ms) 

A 78.7 37.2 317 81.3 31.1 243 87.4 18.1 162 92.6 15.8 88 

B 80.1 38.5 309 82.6 32.4 235 88.7 19.4 154 94.6 17.1 80 

C 75.5 34.4 378 78.1 27.9 304 84.2 14.9 223 89.4 12.6 149 

D 67.7 26.2 400 71.5 20.1 326 77.6 12.9 245 82.8 4.8 171 

E 78.5 37.6 328 82.3 30.9 254 88.4 17.9 173 93.6 15.6 99 

F 68.7 27.2 315 72.5 21.1 237 78.6 14.5 209 83.8 5.8 156 

Note: A to F represented breast, lung, brain, kidney, head and neck, and liver cancers, respectively. 
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Figure 9. Comparison of ACC and RMSE of various models. 

 
 
RMSE, and the shortest detection time (Table 1). 
The results indicated that RFB-SSD model 
performed the best among the four algorithm 
models and also had good performance for 
different types of tumors. 
 
Analysis of tumor cell recognition model based 
on AM and CNN 
The performance of the improved model was 
validated using TCIA, which was segmented into 
training and validation sets in a 4:1 ratio. The ACC 
and RMSE values of each model under different 
dataset sizes showed that, as the dataset grew, 
the accuracy of each model also increased, while 
the RMSE value decreased. When the dataset 
size reached around 200, the performance of 
each model reached its maximum and showed 

convergence. When the dataset size was 500, the 
ACC values of SSD, RFB-SSD, and Imp-RFB-SSD 
were 0.89, 0.91, and 0.98, respectively (Figure 
9a), while the RMSE values of each model were 
0.15, 0.14, and 0.09, respectively (Figure 9b). The 
Imp-RFB-SSD model demonstrated excellent 
accuracy and lower RMSE. The comparison 
results of the response times of various models in 
the TCIA dataset demonstrated the model 
training time under distinctive datasets. Imp-
RFB-SSD showed the lower training time that was 
much shorter than that of the other two 
algorithms (Figure 10a). The recognition time for 
different tumor types showed that Imp-RFB-SSD 
had the shorter processing time for different 
tumors (Figure 10b), which indicated that Imp-
RFB-SSD   had   good   recognition   efficiency   in 
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Figure 10. Comparison of efficiency of different algorithms. 

 
 
Table 2. Comprehensive performance comparison of various models in CGC dataset. 
 

Type 
SDD RFB-SSD Imp-RFB-SSD 

ACC (%) Time (s) ACC (%) Time (s) ACC (%) Time (s) 

A 81.1 5.9 85.4 3.8 92.3 2.6 

B 82.4 5.8 87.3 3.7 93.9 2.5 

C 77.9 6.5 81.8 4.4 88.8 3.2 

D 70.1 6.7 75.2 4.7 82.2 3.4 

E 80.9 6.2 86.7 3.9 93.1 2.7 

F 71.1 5.8 76.2 3.8 83.2 3.0 

Note: A to F represented breast, lung, brain, kidney, head and neck, and liver cancers, respectively. 

 
 
various datasets and different types of tumors. 
The analysis of the comprehensive performance 
of each model using CGC dataset showed that 
Imp-RFB-SSD had better retrieval accuracy and 
lower retrieval time among the three models. Its 
recognition ACCs for six types of tumors were 
92.3%, 93.9%, 88.8%, 82.2%, 93.1%, and 83.2% 
for breast, lung, brain, kidney, head and neck, 
and liver cancers, respectively, with the average 
recognition time for tumors within 3 s, (Table 2) 
which confirmed that Imp-RFB-SSD had the best 
accuracy and recognition efficiency. 
 
 

Conclusion 
 
This study developed a convolutional model built 
on SSD to address the subjective and error-prone 

issues of manual tumor cells identification. This 
model addressed the shortcomings of the SSD 
model by introducing the depth of RFB 
information extraction and AM to enhance the 
focus of attention. The results proved that, when 
the dataset was 3,000, the accuracy of RFB-SSD 
and SSD were 97% and 94%, respectively, while 
the accuracy of FR-CNN and MR-CNN were 81% 
and 78%, respectively. When identifying different 
types of tumors, RFB-SSD had the lowest 
recognition time for each type of tumor. The 
recognition time of RFB-SSD, SSD, FR-CNN, and 
MR-CNN for lung cancer was 3.7 s, 4.2 s, 4.8 s, 
and 5.3 s, respectively. The recognition time of 
each model for liver cancer was the shortest as 
1.5 s, 2.2 s, 2.4 s, 2.7 s and the recognition 
accuracy of 0.98, 0.94, 0.89, 0.87 for RFB-SSD, 
SSD, FR-CNN, MR-CNN, respectively. When the 
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dataset size was 500, the ACC values of SSD, RFB- 
SSD, Imp-RFB-SSD were 0.89, 0.91, 0.98, and the 
RMSE values were 0.15, 0.14, 0.09. The results 
confirmed that the Imp-RFB-SSD model had 
better accuracy and recognition efficiency for 
different types of tumor images. 
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