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The growth of industrialized agriculture has caused the problem of excessive carbon emission (CE) in animal 
husbandry and rural agriculture. To maintain energy conservation and carbon reduction in rural economic 
development, this study explored the peak carbon emission path in Chongqing, China through the optimization 
model of back-propagation neural network and genetic algorithm. The research analyzed the optimization 
direction of energy structure through the carbon emission of rural industrial composition with the aim of 

projecting energy use efficiency, which was achieved by weighing the financial gains from energy use against the 
associated carbon emissions. This study extended the direction of industrial optimization by combining the cross-
variance model of genetic algorithm to explore the global optimal path through population simulation. The study 
also improved the adaptability of the model by iterative training method with the help of the learning process of 
back propagation neural network adaptive data. The results revealed that the loss function of the proposed model 
basically converged after 30 iterations in the test set, and the prediction accuracy of the model could reach more 
than 80% after 60 iterations. The fitness value of the proposed model was reduced to 0.22 × 10-3 after 120 

iterations, while the lowest fitness value of other algorithms could only be reduced to 0.38 × 10-3, which indicated 
that the optimization effect of the proposed model was significantly better than other methods and could 
effectively avoid the local optimal solution problem. The proposed model could provide an effective planning path 

for exploring the peak carbon emissions in the rural area of Chongqing, China. 
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Introduction 
 
The significance of environmental issues has 
increased due to the rise in the frequency of 

anomalous global temperatures in recent years. 
The greenhouse effect, as one of the triggers of 
the abnormal environment, has brought the 
international community's attention to the issue 
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of carbon emission (CE) [1]. The process of 
human economic development has 
simultaneously caused an excess of carbon 
dioxide in the atmosphere. To change the 
national development task into an 
environmentally friendly development process, 
some scholars have shifted the direction of 
environmental optimization to the study of peak 
carbon emission (PCE) pathways [2]. Xu et al. set 
up a standard scenario to calculate the CE output 
of the current industry through scenario analysis 
method and used the predicted development 
trend of the carbon reduction and optimization 
industry to calculate the CE changes under the 
scenario. However, this method had limitations 
in judging the influencing factors in the scenarios 
[3]. The method of long-term energy alternative 
planning system proposed by Masoomi et al. 
could flexibly face the prediction of CE data of 
scenarios when data was missing. The method 
could also present specific CE change patterns 
through data visualization. However, the method 
did not have a strong fit for dynamically changing 
influencing factors [4]. With the emergence of 
intelligent optimization algorithms, Yan et al. 
used a multilayer feed-forward neural network 
(NN) to predict the change of CEs from industries 
and the time of carbon peaking based on the 
carbon potential of cities. However, the learning 
of NNs required a large amount of historical data 
training to be generalizable [5]. As a class of 
multi-factor path exploration method, particle 
swarm optimization algorithm could calculate 
the optimal solution (OS) of the scene through 
the random path change of particles. However, 
this method might easily fall into the local OS in 
the actual scene exploration process. From the 
perspective of the regional CE structure, the CEs 
in rural areas of Chongqing, China are mainly 
composed of CEs from crops and livestock 
followed by residents' living expenses with the 
CEs of other industries being accounted for a 
relatively minor proportion. Thus, the 
optimization direction of CEs in rural areas of 
Chongqing, China is concentrated on industries 
with a high proportion. 
 

To further analyze the data on the global climate 
issue, some scholars have studied the way that 
CE is involved in the process of industrial 
development. Li et al. developed a research 
method based on data statistics to address the 
problem of urban PCE, which explored the 
growth pattern of CEs through the historical CE 
inventory and analyzed the change trends to 
transform low-carbon cities in many aspects such 
as driving factors and industrial development. 
The outcomes showed that the suggested 
strategy had a decent prediction accuracy (PA) of 
CE [6]. Yang et al. proposed an approach based 
on econometric analysis for the study of carbon 
peaking in industrial scenarios. The method 
compared the CE factors of different 
development stages statistically and numerically 
by analyzing the energy structure of the industrial 
environment in a single-factor analysis. The 
results showed that the proposed method was 
ideally suited for industrial scenarios' peak 
carbon pathways [7]. Hussain and Lee proposed 
a research method based on the duopoly game 
model for carbon neutrality in cities, which 
established the relationship between CEs and 
energy structure through mathematical 
modeling and explored the path planning to 
reduce CEs in a carbon neutral way. The results 
suggested that the proposed approach had a 
superior predictive impact when it came to 
maximizing CE magnitude [8]. Guo et al. 
suggested a methodology based on statistical 
analysis to address the problem of carbon 
peaking in metal mines. The method identified 
technical steps for high CEs through statistical 
categorization of CEs from metal mines. By 
modernizing technology and refining the energy 
structure, it was able to reduce emissions. The 
proposed approach offered the green mine 
program an efficient technological route [9]. 
Zhao et al. proposed a method based on time-
weighted regression model for the regional 
carbon peak path. The method calculated the 
reduction of actual CEs through carbon reduction 
project planning and used the relaxation metric 
as the basis of scenario planning to predict the 
carbon peaks in each region. The results showed 



Journal of Biotech Research [ISSN: 1944-3285] 2024; 19:269-280 

 

271 

 

that the proposed approach clearly affected how 
areas plan for carbon reduction [10]. 
 
Zhai et al. developed a genetic algorithm (GA) 
model combined with simulated annealing 
algorithm for the accident evacuation route 
planning. The method revitalized the population 
individuals by simulated annealing, optimized the 
diversity of the population with adaptive cross-
probability operator, and obtained the global OS 
after simulation experiments. The results showed 
that emergency evacuation routes could be 
effectively planned by using the suggested 
strategy in many scenarios [11]. Shishavan et al. 
proposed an improved GA model based on 
combining cuckoo search optimization algorithm 
for the population detection under complex 
networks. The method extended the exploitation 
direction through dynamic monitoring of 
population size to reach a balanced detection of 
communities with modular area exploration. The 
results demonstrated that the proposed method 
had balanced global exploration capability [12]. 
Boughida et al. also proposed a GA and filter-
based research method for the facial feature 
recognition, which extracted the facial region 
features of the image with Gabor filter, 
strengthened the facial feature recognition by 
optimizing the parameter range, and explored 
the best recognition term with parallel 
processing of multiple sets of features. The 
results indicated the high accuracy of facial 
recognition of the proposed method [13]. Zhou 
et al. proposed an optimized GA for the 
assessment of liquefaction potential of soils. The 
method established a baseline assessment index 
through multiple data comparisons and tested 
the model usability with the working 
characteristic curves of the subjects. The results 
showed that the suggested approach could 
accurately forecast the soil's potential for 
liquefaction [14]. Abualigah et al. proposed a GA 
based optimization process model for scheduling 
in cloud computing. The method enhanced the 
data transfer speed in the cloud through the two-
domain optimization of transfer tasks and 
optimized the throughput of cloud computing 
with the transfer decision of aggregate 

attributes. The outcomes showed that the 
suggested strategy might improve job processing 
efficiency and accurately mimic the cloud 
computing transmission process [15]. 
  
GA has been used extensively in industry. 
However, information about its use in 
environmental CE prediction is still lacking. This 
study creatively proposed a PCE prediction model 
using GA and the optimal back propagation 
neural network (BPNN) technique to provide a 
reliable optimization direction for the low-carbon 
goals of Chongqing's rural CE industry. The 
adaptive change of genetic operators was 
employed in this study to determine the optimal 
threshold of the NN, thereby optimizing the 
prediction accuracy of the model through error 
reverse adjustment. The global optimal approach 
of CE optimization was explored through 
population simulation. The CE peak prediction 
model constructed in this study would provide 
theoretical guidance for the analysis of the 
current regional CE structure and the 
optimization direction for the subsequent energy 
structure adjustment, promoting the 
acceleration of the regional CE peak in the 
industrial structure adjustment of rural areas in 
Chongqing, China. 
 

 
Materials and methods 

 
Modeling of peak CE pathways in rural areas of 
Chongqing, China 
As the country attaches importance to 
environmental protection projects, the task of 
energy saving and emission reduction is not only 
concentrated in urban industry, but also 
gradually transferred towards the rural 
environment [16-18]. The optimization of rural 
CEs is primarily focused on two key areas 
including animal husbandry and planting. To 
effectively adjust the CE industry structure in 
Chongqing's rural areas, the study employed the 
prediction of PCEs as the entry point for 
improving CE problems, which involved an 
analysis of the industrial structure of the region 
and a classification of the current energy 
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consumption. As the prediction model for PCEs 
was based on the calculation of actual CEs and 
the estimation of future CEs, the total CEs in rural 
areas could be calculated using the CE coefficient 
method as follows. 
 

*E EC EF=     (1) 

 
where E  was the CE. EC  was the consumption 
of the energy type. EF  was the CE coefficient of 
the energy type. CEs could be localized by 
subdividing the CE categories, and the material 
balance algorithm was used to complete the 
calculation of refined CEs as follows. 
 

*abcd abcd
E EC EF=     (2) 

 
where a  was the type of CEs according to the 
source. b  was the type of energy used in the 
process. c  was the technical method used in the 
process. d  was the type of operating equipment 
in the process. Due to the different fuels used for 
EC, the calculation of CEs from different fuels was 
obtained using equation (3). 
 

i i

i

E Q C=      (3) 

 
where iQ  was the intensity and quantity of 

substance i . iC  was the fuel CE factor. 

Considering the presence of greenery in the rural 
environment to mitigate the growth of CEs, the 
amount of carbon sequestered by greenery was 
calculated as below. 
 

n

plant ci i

i

C Q M D=       (4) 

 
where plantC  was used as the amount of carbon 

sequestered by plants. ciQ  was the daily carbon 

sequestration per unit of green plants. iM  was 

the area covered by green plants. D  was the 
time unit. To express the EC in Chongqing 
countryside in a hierarchical manner, the 
balanced EC expression was obtained using 
equation (5). 

Vj LjEC EC P=      (5) 

 
where VjEC  was the EC of j  villages in 

Chongqing. LjEC  was the EC of j  type projects in 

the villages. P  was the distribution coefficient of 
the project in the village. Since the consumption 
of energy was not a direct consumption but acted 
in the form of electrical energy through 
conversion, when calculating CEs, the loss of 
energy conversion process also needed to be 
included in CEs and was calculated as follows. 
 

GjEC PC FC NEU= + −     (6) 

 
where GjEC  was the total EC value in the rural 

scenario. PC  was the amount of loss in the 
energy conversion process. FC  was the amount 
of consumption at the energy use end. NEU  was 
the EC of non-CEs. The study classified and 
calculated the types of CE in rural areas of 
Chongqing to obtain the patterns of CE in the 
environment. The CE structure analysis of rural 
areas in Chongqing was obtained from the 
statistical yearbook (https://www.stats.gov.cn/ 
sj/ndsj/). The study combined the energy 
structure analysis of rural areas in Chongqing and 
the CE calculation of industries and used BPNN to 
simulate the CE peak prediction model of rural 
areas in Chongqing. Moreover, with the help of 
the rural CE dataset in the statistical yearbook, 
the NN weights were trained and optimized to 
predict future CE peaks based on historical CE 
patterns. 
 
Design of prediction path for PCE in rural areas 
of Chongqing based on optimized BP-GA  
Peak CE means the change of energy structure 
and production mode in the environment [19]. 
Therefore, the attention to the CE problem is not 
only for environmental protection and energy 
saving, but also relates to the adjustment of the 
future development direction of the countryside 
[20]. To more accurately calculate the PCEs in 
rural areas of Chongqing, the study introduced 
genetic algorithm (GA) based on BPNN. The GA 
could calculate the OS for CEs under different 
energy consumption modes, while the BPNN 

https://www.stats.gov.cn/%20sj/ndsj/
https://www.stats.gov.cn/%20sj/ndsj/
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efficiently extracted information features and 
converted data features through hidden layer 
steps. The BPNN could update the weight 
parameters of the hierarchy at any given moment 
through an iterative learning process based on 
data information. Furthermore, it could maintain 
a high level of accuracy in prediction throughout 
the data adjustment process. The BPNN updated 
the weight parameters of the layers at any time 
through iterative learning of the data information 
and maintained the data adjustment process in 
an adaptive manner to reach a highly accurate 
prediction capability. The activation process was 
expressed in equation (7) with sigmoid function 
used to optimize the NN's data transmission 
mechanism. 
 

1
( )

1 x
f x

e−
=

+
                 (7) 

 
where ( )f x  was the activation function. x  was 

the input values (IV). To train the accuracy and 
generalization of the NN, the dataset was 
selected for the process learning of the NN. The 
set of IVs of the dataset was shown in equation 
(8). 
 

1 2( ) ( ( ), ( ), , ( ))nx k x k x k x k= K                (8) 

 
where ( )x k  was the aggregate function of the 

IVs. k  was the selected data group. n  was the 
input data sets. The corresponding output 
expectation relative to the IVs was shown in 
equation (9). 
 

1 2( ) ( ( ), ( ), , ( ))o nd k d k d k d k= K                (9) 

 
where ( )od k  was the set of desired output 

values. The transmission process of the NN was 
in terms of neurons. The input of the 
corresponding HL neuron was represented in 
equation (10). 
 

( )
1

( )
n

i ih i i

i

hf k w x k a
=

= −               (10) 

 

where 
ihf  was the input data vector of the HL 

neuron. 
ihw  was the weight coefficient from the 

input layer to the HL. 
ia  was the bias value of the 

current layer. According to the number of 
neurons inside the HL, the neuron output value 
of each node of the HL could be calculated as 
follows. 
 

( ) ( ( ))i iho k f hf k=            (11) 

 
where 

iho  was the output data vector of the HL 

neuron. The result arriving at the output layer 
(OL) according to the multi-layer pass of the HL 
was shown in equation (12). 
 

( )
1

( )
l

j ho i j

i

yf k w ho k b
=

= −              (12) 

 
where jyf  was the current reception result of 

the OL. 
how  was the neuron transfer weight 

coefficients between HLs. jb  was the bias 

function between the HLs. l  was the nodes in 
the HL. The predicted output was obtained after 
processing in the OL as equation (13). 
 

( ) ( ( ))j jyo k f yf k=               (13) 

 
where jyo  was the prediction output result. The 

prediction result (PR) after cascade transfer was 
compared with the real value to get the actual 
error value. The step-by-step update of the 
weights was completed by back propagating the 
error. The PCE prediction in the rural areas of 
Chongqing was done using the best possible 
combination of BPNN and GA. The flowchart of 
the research algorithm was shown in Figure 1. 
The BP algorithm was suitable for the transfer 
process of the model, which cumulatively 
optimized the model prediction performance 
through its own iterative learning path. The 
advantage of GA relied on the search ability of 
the process with OS judgment. Therefore, the GA 
was used to calculate the update of weights and 
threshold judgment in the NN. In the research 
model, the constituent length of the transfer 
process was calculated in equation (14). 
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Figure 1. Flowchart of BP-GA process. 

 
 

ls n l l l m m=  + +  +               (14) 

 
where s  was the combined coding length. 

ln  

was the nodes in the OL. m  was the nodes in the 
OL. GA achieved the update of individuals by 
variation calculation as shown below. 
 

𝑓(𝑔) = 𝑟1 • (1 −
𝑔

𝐺𝑚𝑎𝑥
)             (15) 

 
where ( )f g  was the variation function. •  

denoted the mutation calculation. maxG  was the 

maximum number of evolutionary times in the 
process. 1r  was the selected random number. g  

was the number of iterations of GA. The results 
of individual variation after GA optimization were 
shown in equation (16). 
 

1 1 1

max

1 1

min

( ) ( )         0.5

( ) ( )                    0.5

t t t

ij ij ij

t t

ij ij

X X X X f g r

X X X f g r

+ + +

+ +

 = + + • 


= − • 

  (16) 

 

where 1t

ijX +  was the mutation result of the gene 

fragment. maxX  was the maximum value of the 

gene fragment. minX  was the minimum fetch 

value of the gene fragment. r  was the value of 
the random number. To enhance the efficiency of 
the model's optimal pathway exploration in CE 
calculations, the local and then global 
exploration steps were carried out in the form of 
interval calculations.  
 

Datasets and computing instruments 
To ascertain the efficacy of the CE peak 
prediction model, agricultural CE datasets from 
2005 to 2020 were selected from the FAOSTAT 
(http://faostat3.fao.org/home/ index.html), 
CEADs (https://www.ceads.net.cn/ data/), MEIC 
(http://meicmodel.org/?page_id =560), and 
Carbon Monitor (http://www. 
carbonmonitor.org.cn) databases for analysis. 
After training the research model, the Chongqing 
regional CEs data were selected from the MEIC 
and Carbon Monitor datasets to divide the test 
set. Test set A contained CE data from rural 
agriculture in Chongqing, while test set B 
contained CE data from rural animal husbandry in 
Chongqing. The ratio of training data to test data 
for the model simulation validation was 10:1. The 
testing process employed MATLAB (https:// 
www.mathworks.com/products/matlab.html) as 
the modeling and simulation platform. Intel Core 
i9-13900K computer with NVIDIA GeForce GTX 
1060 graphics card and M393A4k4B1-CRC 
memory model was used as the hardware in this 
study. The research model first analyzed the 
current situation of CEs in rural areas of 
Chongqing and classified and calculated 
according to the current energy use. Then, the 
optimization measures of energy structure were 
planned and the CE ratio under the new energy 
structure was calculated based on the current 
state of technological development. The study 
analyzed the optimization results by comparing 
the  historical  CE  values  with  the  predicted  CE 

http://faostat3.fao.org/home/%20index.html
https://www.ceads.net.cn/%20data/
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Figure 2. Performance testing in the test set. 

 
 
values after the structural update and completed 
the prediction of PCEs based on the analysis 
results. The research process was based on the 
simultaneous calculation of EC and carbon 
neutrality and statistics on the types of EC and 
transformation patterns. Combining the two 
algorithms yielded the GA-BP model, which was 
used to forecast the CE changes. 
 
 

Results 
 

Performance test of carbon peaking prediction 
model based on optimized neural network 
algorithm with GA 
To validate the planning performance and 
prediction effect of the carbon peak path study 
model, this study set the learning rate of the 
model to 0.01 and the average absolute 
percentage error to 18%. There were 250 
iterations in the algorithm with a population size 
of 10. The model's loss function (LF) variation and 
PA demonstrated that, as the iterations 
increased, the LF of the BP-GA model in test set A 
exhibited a declining trend (Figure 2a). When the 
number of iterations went beyond 25, the LF still 
exhibited a declining trend, but the rate of drop 
slowed down. The PA of the research model in 
test set A showed an increasing trend with the 
number of iterations and reached more than 80% 
when the number of iterations reached 60. In test 
set B, the LF of the research model changed in 
line with that of test set A (Figure 2b). After 30 
iterations, the research model's LF essentially 

converged, and the pace of reduction slowed 
down. The PA of the BP-GA model in test set B 
also tended to increase with the number of 
iterations. The PA of the proposed model 
reached more than 80% when the number of 
iterations reached 40, which indicated that the 
BP-GA model had a stable trend of LF change and 
good convergence in different test sets. To 
further compare the predictive performance of 
the model, the PSO algorithm was used to 
compare its performance with the research 
model [21]. 30 samples were selected to verify 
the predictive performance of the model. The 
PRs of the improved BP-GA model were basically 
consistent with the actual values of the samples 
(Figure 3a). The change curves predicted by the 
model highly overlapped with the actual change 
curves of the samples. The PR of the model was 
4.08 × 103 when the actual result of the sample 
was 4.19 × 103. The sample error rate of the 
research model in the test was only 0.5%. The 
PSO algorithm's PRs for the samples were 
partially inconsistent with the actual results, but 
the trend direction of the predicted curve 
changes was consistent with the actual sample 
curve changes (Figure 3b). The PSO algorithm's 
sample error rate in the test was 3.4%, which 
indicated that the PA of the improved BP-GA 
model for the current sample was higher than 
that of the PSO algorithm. However, due to the 
small samples in the test, the prediction error 
rate of both groups of methods performed low, 
and the error value was maintained within 5%. To 
reflect  the  adaptation  change  of  the  research 
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Figure 3. Comparison of model prediction performance. 
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Figure 4. Comparison of model fitness change curves. 

 
 
model in the scene, the algorithm iterations were 
set to 120. The study compared the introduction 
of LSTM algorithm with the improved BP-GA 
model and obtained the fitness change curve 
[22]. The fitness value of the improved BP-GA 
model was decreasing with the iterations. The 
fitness of the research model before the 
iterations reached 20 decreased rapidly, and the 
fitness value fell to 0.36 × 10-3. After reaching 20 
iterations, the fitness of the research model 
started to converge, showing a slow decreasing 
trend, and the final fitness value was 0.22 × 10-3 

(Figure 4a). The fitness value of the LSTM 
algorithm was also decreasing with the increase 
of iterations. However, the rate of decrease in 
the fitness of the LSTM algorithm started to slow 
down after 8 iterations. When the iterations 
reached 25, the fitness decreased to 0.39 × 10-3. 
The change in the fitness value of the LSTM 
algorithm basically stabilized after the iterations 
up to 25. When the algorithm completed the 

iterations, the final fitness value behaved as 0.38 
× 10-3 (Figure 4b). The fitness value of the 
improved BP-GA model was always in a 
decreasing trend in 120 iterations of change, 
while the fitness value of the LSTM algorithm no 
longer decreased after 25 iterations. The results 
suggested that the proposed model's 
optimization effect was noticeably superior to 
that of the LSTM approach, and it could avoid the 
algorithm's optimization bottleneck. 
 
Application effect test of the improved BP-GA 
based carbon peak path exploration model 
To test the effect of the improved BP-GA model 
in the application of carbon peak pathway 
planning, the study set the natural population 
growth rate in rural area of Chongqing, China as 
3.09%, while coal consumption, natural gas 
consumption, and new energy supply were set at 
17%, 23%, and 16% to account for the total EC, 
respectively,   which   were  consistent  with  PSO 
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Figure 5. Model prediction performance and error variation. 
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Figure 6. Prediction of PCE in Chongqing rural areas. 

 
 
comparison model. The test was performed to 
detect the prediction effect of the proposed 
model in the practical application and the change 
of the error value. The results showed that the 
enhanced BP-GA model's predicted value 
placements in the scene were centrally near to 
the actual value positions (Figure 5a). Only a 
small number of the studied models had 
predicted value locations far from the true 
values. The overall PA of the model was 87.61%. 
The prediction error of the improved BP-GA 

model for real time was 1.2% - 11.8%. Most of the 
predicted value positions of the PSO algorithm in 
the scenario were close to the true value 
positions, but some of the predicted values were 
dispersed towards the center (Figure 5b). The 
overall prediction value accuracy of the statistical 
PSO algorithm in the scenario was 75.42%, and 
the prediction error in real time was 6.4% - 
17.2%. The results showed that the proposed 
model had better prediction in the applied 
scenarios and  12.19%  higher accuracy than that 
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Figure 7. Changes in carbon emissions from rural industrial structure in Chongqing. 

 
 
of the PSO algorithm. The performance of the 
proposed model was more stable from the 
performance of the prediction error and more 
accurate in judging the changes in CEs influenced 
by multiple factors. To test the effect of the 
model on the CE problem in Chongqing's rural 
areas, the outcomes of the CE changes predicted 
by the model under the two sets of scenarios 
were calculated. The results showed that the CEs 
in Chongqing rural areas predicted by the 
improved BP-GA model under the base scenario 
demonstrated an upward trend from 2024 to 
2034 and reached the PCE in January 2034. In 
addition, the proposed model predicted that the 
CEs in Chongqing rural areas would increase from 
29.85 million tons to 34.72 million tons during 
the period of 2024 – 2034 (Figure 6a). The trend 
of CEs in Chongqing rural areas under the 
enhanced scenario was consistent with the base 
scenario, reaching the PCE in March 2034. The 
proposed model predicted that the CEs of 
Chongqing rural areas in the enhanced scenario 
would increase from 29.85 million tons to 36.31 
million tons during the period of 2024 - 2035. The 
results suggested that the model predicted CEs in 
Chongqing rural areas would peak at a similar 
time under both sets of scenarios. However, the 
peak CE in the enhanced scenario was 4.8% 

higher than that in the base scenario. The 
changes in CEs from the industrial structure in 
Chongqing rural areas were analyzed according 
to the predicted paths. The average share of CEs 
from cultivation in total EC between 2025 - 2030 
was 32.09% based on the predictive analysis of 
the BP-GA model. The CE share of livestock, 
residential life, transportation mode, and waste 
disposal were 26.76%, 18.25%, 10.91%, and 
6.78% of CEs, respectively. Moreover, animal 
husbandry had the largest decrease in CEs among 
rural industries with an average decrease of 
19.12% (Figure 7a). The improved BP-GA model 
predicted that the CEs between 2030 and 2035 
would still be the highest in the plantation 
industry, but the share of CEs from residential life 
and waste disposal process would increase 
(Figure 7b). The change of the decrease of each 
industry showed that the decrease of CE of 
plantation industry in the current time period 
was increased by 8.19%, and the decrease of CE 
of residential life was increased by 6.47%, which 
indicated that the main optimization targets of 
Chongqing rural industries in the process of 
reaching the PCE were planting and animal 
husbandry. The proposed model could effectively 
plan and adjust the CEs in the agricultural 
production process. 
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Discussion 
 
To optimize the industrial CE problem in the rural 
environment of Chongqing, China, this research 
proposed the optimization method of rural CE 
with the self-learning ability of NN and the 
decision algorithm of cross-variation. The 
research method calculated the current CEs of 
the allocated items with the material balance 
algorithm and planned the emission reduction 
promotion projects of the industries according to 
the optimizable options. The study also 
calculated the optimal weights of the NN with the 
exploration ability of the GA and adjusted the 
applicability of the NN by back propagating the 
error of the PRs. The results showed that the 
prediction error rate of the research model was 
0.5% for the tested small-volume samples, which 
was 2.9% lower than the error rate of the PRs of 
the PSO algorithm. After increasing the number 
of model predictions, the overall PA of the model 
was 87.61%, which was 12.19% higher than the 
accuracy of the PSO algorithm. The results 
suggested that the prediction performance of the 
research model was good during the testing 
process. According to the prediction of CE peak in 
rural areas of Chongqing under two sets of 
industrial optimization scenarios, the carbon 
peak time after industrial structure optimization 
was in 2035. However, under extended 
scenarios, the efficiency of structural 
optimization in this area might not be as 
expected. Therefore, the CE problem of regional 
industries was more severe, and the predicted CE 
peak was higher. Based on the analysis of 
changes in CEs from industrial structure, the 
optimization process led to a greater 
optimization of CEs in planting and animal 
husbandry, reducing industrial CEs. This study 
demonstrated that the optimization of CE 
structure in rural areas of Chongqing was more 
efficient in terms of planting and animal 
husbandry. Based on the analysis of the reasons, 
the GA data mutation optimized the model's 
adaptability to diverse data and improved the 
model's PA for rural data in Chongqing. 
Meanwhile, the BPNN model combined with GA 
improved the data analysis ability of rural CE 

structure. Therefore, it could obtain more 
reliable PRs based on strengthened preset 
scenarios. Liu et al. predicted the total CEs of 
Chongqing based on gray relational analysis and 
particle swarm optimization algorithm, but the 
prediction effect of industrial CEs in rural 
environments was not satisfied [21]. Compared 
with this method, the research model had a more 
stable prediction effect and higher PA for rural 
environments. Ahmed et al. used the LSTM 
algorithm to predict the growth of CEs in coal-
consuming countries with multiple populations, 
which effectively validated the application effect 
of industrial structure transformation on 
reducing CEs [22]. However, this method lacked 
the analysis of China's rural industrial structure, 
while the research model provided targeted 
analysis of regional issues to improve the 
prediction of CEs from rural industries in 
Chongqing, China. Since the research model's 
exploration of the path for the peak of rural CEs 
depended on regular changes in CEs, data 
predictions for future CEs might be affected by 
irregular factors such as sudden temperature 
fluctuations. It was thus recommended that the 
scope of model data collection should be 
expanded in the future, and that the predictive 
performance of the model should be further 
optimized by combining data with irregular 
factors, which would facilitate the appropriate 
exploration and planning of CE peak paths for a 
greater number of scenarios. 
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