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Assessment of the cotton boll health is essential for field oversight and maturity rating. Typical methods for 
agricultural image acquiring are unsuitable for cotton boll images due to the possibility of distribution mismatch 
that resulted from environmental variables such as duration, climate, farming activities, and regions. Adapting a 
domain can solve this problem. This study applied a domain-adversarial neural network-driven unsupervised 
domain adaptation (DANN-UDA) approach to gather the cotton bolls datasets, which involved multiple steps of 

target label inference and dense inherent ConvNet-based feature extraction. The proposed approach was 
executed in the agricultural robot with Ubuntu and Robot Operating System (ROS) environment and verified using 
an agricultural robot captured cotton boll image. The efficiency of proposed DANN-UDA method in cotton boll 

identification was evaluated and demonstrated better results. The performance of the cotton boll stage detection 
of proposed DANN-UDA was compared using Visual Geometry Group (VGG) and You Only Look Once version 5 
(YOLOv5) networks in agricultural robot vision system. The results demonstrated that the proposed approach 
obtained the best identification outcomes in a variety of scenarios. Additionally, the proposed model could serve 
as a helpful substitute for human observation and conventional categorization techniques. 
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Introduction 
 
Cotton is a significant cash crop and a key source 
of natural feed, food, and fiber source. 
Harvesting robots may replace human labor and 
lower the cost of harvesting since hand 
preference is time-consuming and expensive [1]. 
Consequently, plucking cotton bolls can be 
effectively substituted by using harvesting 
robots. The growing environment of cotton bolls 
is an important variable in determining the 
output and quality of harvest. The separation 
phase, boll opening, and growth cessation are 

three of the most crucial phases in the growth of 
a cotton boll from formation to full cracking [2]. 
Effective field harvest management could 
significantly lower the possibility of premature 
cracking or boll rotting. A second opportunity for 
cotton boll growth can be internally after the 
boll's initial growth has slowed or stopped, 
possibly during the boll opening phase. This time 
frame has a significant influence on the surface 
clothes, prevention of boll rotting, and 
accelerating maturity. Different varieties of 
cotton bolls have diverse stages of development 
including the beginning, developing, partly 
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cracked, and completely opened states [3]. 
Cotton boll health must be accurately assessed to 
handle the field efficiently and determine crop 
maturity. Conventional techniques of assessing 
cotton bolls frequently require manual 
inspection and image capture, both of which are 
susceptible to inaccuracies caused by 
environmental variability like time, climate, and 
geography. These problems highlight the 
requirement for sophisticated methods to 
increase the accuracy of boll evaluation. 
 
Recent development in agricultural technology 
has introduced advanced methods. Machine 
learning and computer vision have emerged as 
potential approaches to enhancing cotton boll 
detection precision. Convolutional neural 
networks (CNNs) have been used to identify 
cotton growth stages and evaluate boll health 
more precisely [4]. However, conventional image 
processing techniques and CNN-based methods 
still encounter substantial domain adaptation 
problems. A mismatch between training data and 
real-world circumstances can result in decreased 
model efficiency, emphasizing the requirement 
for enhanced methods [5, 6]. In recent studies, 
different methods such as integrating support 
vector machines with image processing for boll 
counting and yield estimation have shown 
promised results [7]. Furthermore, deep learning 
methods have been investigated for identifying 
diseases in cotton plants, showing their 
versatility and efficacy in agricultural settings [8, 
9]. Despite these advances, the issue of domain 
shift, where model efficiency degrades because 
of changes in environmental conditions, is still an 
important obstacle [10, 11]. 
 
This study aimed to develop and assess a new 
domain-adversarial neural network-driven 
unsupervised domain adaptation (DANN-UDA) 
method to tackle the domain shift challenge in 
cotton boll evaluation and improve the precision 
of boll detection by adapting to different 
environmental circumstances and mitigating the 
effect of distribution mismatch. By using a 
dataset of cotton boll images, this study 
proposed an extensive strategy that 

incorporated target label inference and dense 
intrinsic ConvNet-based feature extraction [1, 
12]. The proposed DANN-UDA method combined 
numerous sophisticated techniques including 
You Only Look Once version 5 (YOLOv5) network 
for real-time object identification and the Visual 
Geometry Group (VGG) network for feature 
extraction and classification to attain high 
efficiency [13, 14]. The system was deployed in 
Ubuntu and the Robot Operating System (ROS) 
settings, enabling real-time image processing by 
agricultural robots. The DANN-UDA model's 
efficiency was assessed by comparing its efficacy 
against conventional classification techniques 
and evaluating its capacity to adapt to various 
environmental circumstances [15, 16]. This study 
enhanced the accuracy of boll identification and 
decreased dependence on manual inspection, 
which was usually labor-intensive and 
susceptible to errors by automating the 
assessment procedure and using cutting-edge 
machine learning methods [17, 18]. The 
proposed DANN-UDA model was a strong 
substitute for conventional techniques with 
possible uses in other aspects of precision 
agriculture and might result in more effective 
field management and superior crop yield 
prediction, contributing to the total innovation of 
agricultural technology [19]. 
 
 

Materials and methods 
 
Development of an agricultural robot vision 
system 
The agricultural robot was operated by two 
personal computers (PCs) running Ubuntu and 
Robot Operating System (ROS). Ubuntu was 
dedicated to visual highlight identification and 
removal methods, while the ROS hosted nodes 
for navigation, vehicle control, and localization. 
The two PCs interacted using the ethernet 
through a specialized switch and router with one 
PC running the ROS master. The router nodes on 
either PC could find one another and 
communicate immediately.  An agricultural robot 
with a high-resolution camera captured detailed 
photographs of agricultural fields including 
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cotton bolls at various development phases was 
employed to explore the cotton field and detect  

 
 
Figure 1. Overview of the proposed agricultural robot vision system. 

 
 
the cotton boll stage under varying 
environmental conditions. The images were 
analyzed in real-time to identify the highlights 
and eliminate the uneven lighting images with a 
pulsed illuminating system. Cameras were 
calibrated using the automatic multi-camera 
calibration in the MATLAB calibration toolbox. 
Ubuntu classified cotton bolls into development 
stages using a dense inherent ConvNet-based 
feature extraction of the image. The DANN-UDA 
approach was then detecting patterns and 
characteristics that were important to each 
stage. The output comprised cotton boll phases 
as beginning, developing, predominantly 
cracked, and entirely open. The image detection 

and removal in the agricultural robot vision 
system were depicted in Figure 1. 

Agricultural robot captured image  
The images taken by an DJI P4 Multispectral 
agricultural robot camera (DJI, Shihezi, Xinjiang, 
China) were obtained at 44.3069° N and 86.0299° 
E, which included 250 cotton bolls, encompassing 
four growth phases with 60 images of each stage 
and containing features of size, shape, color, 
texture, and surrounding land. Cotton field 
images were cropped to demonstrate cotton 
bolls in many developmental stages including the 
starting stage, growing stage, primarily cracked 
stage, and completely open stage. The effects of 
various cotton growth variables such as the plant 
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years and the plant region were also considered 
when assessing the suggested approach for 
cotton boll stage identification. All images in the 
cotton boll image dataset were acquired by field 
observations throughout a five-year period from 
2019 to 2023. The dataset contained five 
separate sequences, each depicting a different 
year, capturing seasonal fluctuations and growth 
trends over numerous years. Each sequence 
contained photos from distinct plant locations 
and depicted varied environmental conditions. 
This temporal and spatial variability made the 
dataset more resilient for training and testing the 
model. The photos were chosen randomly within 
each stage to eliminate bias and offer a 
representative sample of each growth phase, 
which ensured that the dataset included a wide 
range of boll appearances and circumstances, 
making it ideal for training machine learning 
models to recognize and categorize cotton bolls 
at different stages of development. 
 

Feature extraction using dense inherent 
ConvNet 
Dense inherent ConvNet was used to recognize 
and extract elements from images that were 
relevant to the stages of cotton boll growth. The 
dense inherent ConvNet model was fed with 
images of cotton bolls at different phases and 
was trained to identify patterns and 
characteristics that corresponded to each step of 
cotton bolls. It was possible to extract pertinent 
characteristics including boll size, shape, color, 
texture, and surrounding land by using the 
convolutional layers and hierarchical structure of 
the dense inherent ConvNet. Features for 
agricultural applications including plant 
monitoring, yield estimation, and classification 
were also extracted. Dense inherent ConvNet 
employed hand-crafted features on a wide range 
of visual tasks to achieve the capacity to learn 
intricate input changes with comparatively 
domain-invariant and linearly separable results. 
The forward feature extraction procedure 
consisted of three primary layers, which were 
convolution, pooling, and full connected layers. 
The convolution layer was a weighted 
accumulation procedure that the template 

convolution kernel moved to the convolution 
layer in the input image and generated the 
complicated image through multiplying and 
combining the components that crossed the 
input image and template’s established domains 
at each time traveling to a cotton boll stage by 
obtaining a point in the target image of cotton 
bolls. Pooling was the process of combining 
samples from different bolls in a field to get 
accurate information for cotton boll stage 
identification, which facilitated the evaluation of 
maturity and uniformity and were important for 
wise management choices and harvest 
scheduling optimizations. The pooling function 
took advantage of the general probabilistic 
properties of nearby outputs at a specific place. 
The fully connected layer was used to analyze 
characteristics that were obtained from images 
and assist in dividing different stages of bolls. By 
connecting each of the neurons from the 
preceding layer using Deep Learning 
(DL) methods, this layer facilitated pattern 
recognition, which was essential for accurately 
differentiating between the various 
developmental phases of cotton bolls. In 
addition, features relevant to the growth stages 
of cotton bolls including boll size, shape, color, 
texture, and surrounding land characteristics 
were extracted and used for the DANN-UDA 
model accurate identification and differentiation 
of cotton boll growing stages. 
 

Domain-adversarial neural network (DANN) 
for feature transformation  
DANN was used to improve model robustness in 
cotton boll stage detection by matching 
information across many domains such as 
backdrops or lighting conditions. To identify the 
stage of a cotton boll in a variety of agricultural 
circumstances, DANNs was used to develop 
domain-invariant representations, which allowed 
for proper classification independent of 
environmental variables (Figure 2). The typical 
DANN design had one hidden layer to classify 
𝑒(𝑤)  in the natural classification equations (1) 
and (2), where each determined conditional 
probability of DANN (𝑔(𝑤)) was assigned to 𝑤.  
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𝑔(𝑤) = 𝑠𝑖𝑔𝑛 (𝑎 + 𝑋𝑤)             (1) 𝑒(𝑤) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑑 + 𝑈𝑔(𝑤))            (2) 

 
 
Figure 2. Structure of DANN. (a) beginning, (b) developing, (c) predominantly cracked, (d) entirely open. 

 
 
The agricultural robot vision system was 
developed using equations (3) and (4).  
 

𝑆𝑖𝑔𝑛(𝑏)𝑑𝑒𝑓
=

[
1

1+𝑒𝑥𝑝(−𝑏𝑗
]𝑗=1

|𝑏|             (3) 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏)𝑑𝑒𝑓
=

[
𝑒𝑥𝑝(𝑏𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑗)
|𝑏|
𝑖=1

]𝑗=1
|𝑏|            (4) 

 

The sigmoid function (𝑆𝑖𝑔𝑛(𝑏)) of each element  
|𝑏|  in the vector 𝑏𝑗  valued among 0 and 1 for 

cotton boll stage reorganization. The variable of 
𝐾(𝑒(𝑤), 𝑧) was the target domain of the starting 
stage in cotton bolls and represented the 
maturity of cotton given environmental variables 
𝑥, 𝑢, 𝑎, 𝑑 using equations (5) and (6).  
 

𝐾(𝑒(𝑤), 𝑧)𝑑𝑒𝑓
=

𝑙𝑜𝑔
1

𝑒𝑧(𝑤)
             (5) 

  
𝑚𝑖𝑛

𝑥, 𝑢, 𝑎, 𝑑
 [

1

𝑛
∑ 𝐾(𝑒(𝑤𝑗

𝑡𝑛
𝑗=1 ), 𝑧𝑗

𝑡)]            (6) 

 
Moreover, the growing of cotton is significantly 
affected by the climate. Temperature, humidity, 
and rainfall are among the factors that impact 

cotton growth and quality, which, in turn, affects 
harvesting production.   
Unsupervised domain adaptation (UDA)  
The UDA model started with unlabeled target 
domain of cotton boll image data, and then 
utilized predictions to produce pseudo-labels for 
target domain of cotton boll image data. Further, 
the model was fine-tuned with both labeled 
source domain and pseudo-labeled target 
domain of cotton boll image data. UDA in cotton 
referred to the identification of phases including 
growing, blooming, maturity, boll development, 
and seedling to facilitate strong model transfer 
across various habitats and growth 
circumstances. Source domain observations 
could reliably determine the required domain's 
labels. Consequently, an iterative making loop 
approach was used to estimate counterfeit labels 
of the intended domain of sample as below. 
 
fj(xs) = vj

s y + cj             (7) 

 
where fj(xs)  was the score obtained using k- 

nearest neighbor (KNN). The target domain  
(U = {ys

′ , xs
′ }) could be determined by the score 

fj(xs) . To establish a threshold for categories, 

∂ = {∂jj = 1,2,3 … c𝑑𝑗  and 𝑣𝑗  were the weight 
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and bias coefficients of the j th class of KNN 

attained from M. S(1)  was the subsequent 

transition matrix V(1) using the measure learning 

approach. S(2)  was the efficient with cotton 
bolls. It was possible to use reliability on the 
source sector with knowing actual labels as an 
indicator to monitor the intended sector's label 
prediction outcome and created a pattern 
classification model that had high generalization 
performance. 
 
Domain-Adversarial Neural Network-driven 
Unsupervised Domain Adaptation (DANN-UDA) 
was a method for improving machine learning 
models' capacity to generalize across domains by 
resolving domain shifts. It combined a DANN with 
UDA, in which a feature extractor learned to 
generate domain-invariant features by training 
against a classifier that used these traits to 
complete tasks such as cotton boll classification. 
UDA refined the model using unlabeled target 
domain data and often creating pseudo-labels, 
which improved resilience and accuracy in real-
world scenarios. Cotton bolls were classified into 
developmental phases by the suggested 
agricultural robot system, which employed a 
Dense Inherent Convolutional Neural Network 
and DANN-UDA. The system detected and 
removed visual highlights from high-resolution 
photos collected with a calibrated camera 
system, ensuring reliable analysis in a variety of 
environments.  
 
Evaluation of proposed DANN-UDA  
The proposed DANN-UDA was evaluated and 
compared with several recognized methods. The 
accuracy of DANN-UDA was estimated using KNN 
by selecting the closest data points in the feature 
space. The conventional methods were 
employed for comparison studies, which 
included No Adaptation (NA), a baseline 
technique with no domain adaptation being 
used; Geodesic flow kernel (GFK), a method using 
geodesic flow to connect the source and target 
domains for adaptation; Transfer joint matching 
(TJM) method that aligned the distributions of 
the source and target domains; 7-layer VGG-M 
model, a deeper CNN model being tested for its 

efficiency in classification tasks; Convolution 
neural network fully connected (CNN-FC), the 
standard CNN model with fully connected layers; 
Convolution neural network spatial pyramid 
pooling (CNN-SPP), a CNN model with spatial 
pyramid pooling to deal with various image sizes; 
Local binary pattern (LBP), a handcrafted feature 
approach that defined textures in the image. 
Gabor, a handcrafted feature approach for 
capturing texture and spatial frequency data; 
Sparse codes (SC) that encoded data as sparse 
mixtures of basic functions; Locality-constrained 
linear coding (LLC) that improved SC by 
integrating location limitations; CNN-fully 
vectorized (CNN-FV), a CNN variation in which 
characteristics were vectorized; CNN-
conventional learning pipeline (CNN-CLP), a 
normal CNN model with a traditional learning 
pipeline; and Joint distribution adaptation (JDA) 
that aligned the joint distributions of source and 
target domains for improved adaptation. 
Through the comparison, the most effective 
methodologies for cotton boll stage detection 
would be determined, which guaranteed 
dependable and accurate results across various 
settings. 
 
 

Results and discussion 
 
KNN was used to estimate the accuracy of the 
proposed DANN-UDA method. KEL, AEL, and T00 
denoted the plant types, while the numbers 05 
and 01 were apparatus numbers, accordingly, 
which were assigned by the agrometeorological 
analysts. UDA methods used for this study were 
NA, GFK, TJM. Additionally, certain traditional 
CNN-based, end-to-end prediction techniques 
were examined with the goal of determining an 
appropriate encoding strategy for the column 
characteristics, which included 7-layer VGG-M, 
CNN-FC, CNN-CLP, and CNN-SPP.  
 
Estimation of DANN-UDA accuracy 
Table 1 showed the accuracies in classification of 
the cotton bolls using different hand-crafted 
methods. The plant groups AEL01, KEL01, and 
T0005 (2019-2023) indicated various sets of 
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cotton boll images categorized by specific plant 
kinds or apparatus numbers allocated by 
agrometeorological     analysts.     These     groups 
Table 1. Numerical outcomes of accuracy. 
 

Methods AEL01 KEL01 T0005-2019 T0005-2020 T0005-2021 T0005-2022 T0005-2023 

LBP 65.6 60.9 49.5 51.6 51.0 44.0 53.2 
Gabor 67.4 76.2 72.7 68.8 69.9 75.9 73.3 

SC 41.8 59.6 61.1 51.0 48.4 45.4 56.3 
LLC 56.7 52.8 49.6 42.0 42.6 40.0 51.4 

DANN-UDA 70.4 80.8 79.3 75.7 79.3 83.1 80.4 

 
 

 
 
Figure 3. Result of Cotton bolls identification using different hand-crafted methods. 

 
 

 
 
Figure 4. Result of cotton bolls classification using different CNN-based methods with VGG-M. 

 
 
spanned a wide range of climatic circumstances 
and cotton boll growth phases and guaranteed 
thorough evaluation. The proposed DANN-UDA 
method was thoroughly tested across these 
varied plant groups to determine its robustness 
and efficacy in comparison to standard hand-
crafted methods of LBP, Gabor, SC, and LLC. The 
results showed that DANN-UDA had the highest 
accuracy among all tested methods. 

 
Comparison of DANN-UDA with other methods 
The results of cotton boll identification using 
different existing hand-crafted methods and 
proposed DANN-UDA method showed that the 
proposed DANN-UDA achieved 70.4%, 80.8%, 
79.3%, 75.7%, 79.3%, 83.1%, and 80.4% in AEL01, 
KEL01, T0005-2019, T0005-2020, T0005-2021, 
T0005-2022, T0005-2023 groups, respectively, 
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which were better than that of other methods 
(Figure 3). However, when using different CNN-
based methods with VGG-M, cotton boll 

identification using the proposed DANN-UDA 
achieved  94%,  96%,  97%,  92%,  91%,  94%,  and  

 
 
Figure 5. Cotton bolls identification using UDA methods.  

 
 
93% in AEL01, KEL01, T0005-2019, T0005-2020, 
T0005-2021, T0005-2022, and T0005-2023, 
respectively, which was better than the other 
existing methods (Figure 4). The cotton boll 
identification using UDA methods showed that 
the proposed DANN-UDA method achieved 94%, 
96%, 93.4%, 94.1%, 93.4%, 89%, 87%, 88%, and 
89.4% in A01, K01, T2019, T2020, T2021, T2022, 
and T2023, respectively, comparing to the 
existing methods, which was better than other 
methods (Figure 5). The results demonstrated 
that the proposed DANN-UDA method achieved 
the best results because it effectively addressed 
the challenges of domain shifts caused by 
environmental factors like time, climate, and 
location, which traditional methods struggled to 
handle. By using a domain-adversarial neural 
network (DANN), the method adapted to 
different conditions and ensured accurate 
feature extraction and classification across 
various settings. This adaptability allowed the 
model to consistently outperform other 
techniques in identifying cotton boll stages, 
making it more reliable and precise in diverse 
agricultural environments. 
 
Testing the proposed method in the field 
The proposed DANN-UDA method was tested in 
field conditions to ensure its practical 
applicability. High-resolution images of cotton 
bolls at various developmental stages were 
collected from multiple fields over the years 2019 

to 2023. These images were annotated by 
experts and preprocessed through cropping, 
resizing, and normalization. The DANN-UDA 
model was then applied to identify the stages of 
the cotton bolls with performance assessed using 
metrics of accuracy, sensitivity, specificity, and 
confidence intervals to ensure precision and 
consistency. Comparative analysis with 
traditional hand-crafted features of LBP, Gabor, 
SC, LLC and other CNN-based methods 
demonstrated the superior performance of the 
DANN-UDA approach. Additionally, the method 
was integrated into an agricultural robot vision 
system and successfully provided real-time 
feedback on cotton boll stages, thus validating its 
robustness and practical utility in real-world 
agricultural monitoring. A YOLO-based learning 
system with YOLO-VGG has been used for 
immediate object recognition and manipulation 
by agricultural robots, specifically for recognizing 
and navigating fruit trees in complicated 
environments through YOLOv5 network. In this 
study, the agricultural robot identified the cotton 
boll stage through a vision system, which used 
existing YOLOv5, YOLO-VGG, and the proposed 
DANN-UDA novel approaches for the vision 
detection to identify the cotton boll stage. The 
performances of three vision detection 
classification algorithms were evaluated using 
four metrics including accuracy, precision, recall, 
and F1 score. Accuracy was the ratio of accurate 
predictions to total predictions, indicating the 
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classification model's overall success in correctly 
recognizing cotton boll stages throughout the 
dataset. Precision quantified the accuracy of the 

model's positive predictions, guaranteeing that 
identified cotton bolls were in the correct stage 
without  misclassifying  of  other  items or phases. 

 
 
Figure 6. Cotton boll identification analysis. 

 
 
Recall assessed the model's ability to capture all 
important instances within a dataset, providing 
complete monitoring and analysis in agricultural 
contexts. The F1 score was the harmonious 
average of both recall and precision and was a 
balanced measure of the effectiveness of a model 
that considered both accuracy and recall, 
showing strong and dependable accuracy and 
recall in practical farming scenarios applications. 
The results showed that YoLO VGG had a greater 
accuracy percentage of 82.5% than YOLO v5 
network’s 80.4%, while proposed DANN-UDA 
had the best accuracy percentage of 86.8% 
(Figure 6). The overall performance of DANN-
UDA was higher than that of the other two YOLO 
based systems. 
 
The agricultural robot vision system tended to 
classify the growth stages of cotton bolls and 
assisted in exactitude agriculture by identifying 
cotton boll maturity accurately, which could 
enable prompt actions and optimize potential 
yield. The cotton boll phase occurs throughout 
the late growth stages, where the bolls enhance 
the fibers. The potential pest damage, labor-

intensive harvest requirements, and weather 
sensitivity are all the issues to affect the yield. 
The proposed DANN-UDA method was used to 
assess the cotton boll health in the field, which 
was essential for field oversight and maturity 
rating, and achieved superior results in cotton 
boll identification comparing to the other existing 
methods. The results of this study suggested the 
potentials for improving cotton boll stage 
identification using robots, machine learning 
algorithms, and sophisticated imaging 
technologies in the future and would provide 
accurate and effective tool for agricultural 
management and monitoring. 
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