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In the marine environment, salt spray particles are defined as sea salt particles that are carried by tiny salt particles 
suspended in seawater. These particles are formed under the action of wind and constitute a component of 
marine meteorological phenomena, exerting a significant influence on marine ecology and human activities. In 
recent years, with the continuous promotion of the national marine strategy, the efficient operation and 
equipment safety of marine equipment have gradually received attention. In response to the problem of 
insufficient accuracy and real-time monitoring of salt spray particles in the marine environment, this study 
proposed a marine salt spray particle detection scheme based on Internet of Things technology and an improved 
YOLOv5l algorithm. By introducing spatial-to-depth convolution modules and convolutional block attention 
modules, the accuracy and robustness of the detection model had been significantly improved. The results 
showed that the model achieved excellent performance in terms of mean square error, root mean square error, 
and mean absolute error indicators as 0.000052, 0.0052, and 0.0011, respectively. The proposed model was 
superior to comparative algorithms of You Only Look Once-Gaussian Soft Selection and You Only Look Once-
Convolutional Block Attention Module. The diagnostic accuracy of the proposed model was 92% with an 
interference capability of 36 dB, a sensitivity of 550 mV, and satisfactory real-time performance. The results 
indicated that the proposed model effectively improved the accuracy and real-time performance of marine salt 
spray particle detection, which was meaningful for improving the safe operation of marine equipment. 
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Introduction 
 
Against the backdrop of China's strategic 
development in the South China Sea, the 
expansion of the country's maritime vision is 
accompanied by the widespread deployment of a 
series of domestically developed high-tech 
equipment in the region. However, the complex 
marine environment in the South China Sea 
poses a serious challenge to the safe and efficient 

operation of this high-tech equipment due to its 
unique mechanical wear, chemical corrosion, and 
electrochemical effects [1, 2]. To address this 
challenge, the Internet of Things (IoT) 
technology, as an important means of real-time 
and accurate data collection, has shown great 
potential for application in marine environmental 
monitoring. The data collected through IoT 
technology can accurately calibrate and adjust 
device parameters, optimize operating modes, 
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and reduce energy consumption, which is crucial 
for ensuring the stable operation of devices in 
harsh environments [3, 4]. You Only Look Once 
version 5 large (YOLOv5l) is a real-time object 
detection algorithm based on deep learning, 
using larger models and deeper network 
structures to improve detection accuracy and 
robustness [5]. The YOLOv5l model employs a 
technique known as end-to-end training, 
whereby object detection tasks are transformed 
into regression problems, which enables the 
model to rapidly and accurately identify multiple 
objects within images or videos. Although IoT 
technology and related algorithms have shown 
significant advantages in marine environment 
monitoring, the complexity of existing research 
methods has become a major obstacle to their 
deployment on resource-limited edge devices. 
Consequently, many researchers are directing 
their attention to related research. 
 
The advent of the IoT era has led more 
researchers to focus on applying IoT to various 
fields of life. Alassafi et al. proposed a method 
based on a Bidirectional Long Short-Term 
Memory (Bi-LSTM) network combined with 
optimization algorithms for the security 
detection of industrial IoT. This method had a 
detection accuracy of up to 98.91%, which was 
superior to existing methods, highlighting the 
importance of effective planning and innovative 
systems in improving industrial IoT network 
security [6]. Pragati et al. proposed a network 
security threat identification method based on a 
krill deep neural network stacked auto-encoder 
to address the vulnerability of IoT to network 
attacks. The accuracy of this method reached 
99.37%, which was superior to 98% of the 
Support Vector Machine (SVM) and K-nearest 
Neighbor method (K-NN), as well as 90% and 92% 
of naive Bayes and random forests [7]. In 
addition, Asimkiran et al. applied genetic 
algorithms to select key features and trained a 
Convolutional Neural Network (CNN) model for 
network packet classification in the IDS method 
to address the vulnerability of the IoT 
environment of the MQTT protocol to attacks. 
This method could effectively identify potential 

intrusions in MQTT networks with the satisfied 
test results [8]. Further, Geetha et al. proposed 
an intrusion detection method based on adaptive 
weighted kernel SVM and circular search to 
address the low fault detection rate of IoT 
systems in marine equipment environments. This 
approach had a detection rate of 93% on the 
UNSW-NB15 and KDD99 datasets, providing 
effective protection for marine equipment [9]. 
Ibrahim et al. proposed an image dimensionality 
reduction method combining edge computing 
and machine learning to solve the network traffic 
and delay problems caused by IoT device data 
transmission. After using auto-encoder and PCA 
dimensionality reduction, the data transmission 
volume was reduced by 77%, and there was no 
significant impact on the accuracy of cloud 
processing data [10]. Xu et al. proposed a method 
to introduce an attention mechanism in YOLO 
networks to address the issues of small object 
detection being susceptible to complex 
environmental background interference and 
poor detection results. This method improved 
the detection performance, and its effectiveness 
was further verified by creating amateur mask 
datasets and conducting experiments [11]. 
Further, Zhao et al. proposed the YOLO-AFPN 
model for detecting external damage targets in 
transmission lines, using techniques such as 
feature comparison, YOLOv8 network, and AFPN 
feature fusion to improve detection capabilities. 
The improved model had an average accuracy of 
86.1% at a size of 6.6 MB, which was better than 
the original network and met the deployment 
requirements of edge devices [12]. Guo et al. 
designed a lightweight single-stage multi-object 
detection framework based on DCM3-YOLOv4 to 
address the challenges of accuracy and real-time 
performance in roadside sensing systems. The 
optimized model achieved a mAP of 0.930 and an 
inference time of 96.13 ms on the RS-UA dataset, 
outperforming other models on the same 
platform [13]. Previous studies have achieved 
significant results in improving IoT security and 
object detection. However, there are still some 
shortcomings. Although some developed 
methods have high detection accuracy, they 
sacrifice some real-time performance and may 
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not be suitable for application scenarios that 
require rapid response. In addition, some 
methods rely on numerous annotated data for 
training, requiring high quality and quantity of 
data. Some methods have high model complexity 
and are difficult to deploy on edge devices with 
limited resources. Therefore, there is an urgent 
need for a solution that can monitor Marine Salt 
Spray Particles (MSSP) in real-time with high 
accuracy and robustness. This solution requires 
no negative impact on real-time performance 
and does not impose excessive resource burden 
on edge devices.  
 
In the marine environment, monitoring the 
atmospheric salt spray content is crucial for the 
safe operation of offshore equipment. The 
traditional monitoring method for marine salt 
spray is offline monitoring, which collects 
samples through gas collection methods such as 
the dry film method, analyzes sample data 
through spectrophotometry equipment and 
other methods after preprocessing, and obtains 
salt spray content through parameter conversion 
according to actual conditions [14, 15]. Such 
method can only monitor the salt spray content 
at a certain time point, and sampling requires a 
lot of manpower. IoT is a technology that 
connects entities in the real world to the Internet 
to realize the communication between things, 
people, and things, which can collect real-time 
information about objects that need to be 
monitored, connected, or interacted with 
through sensing devices. Moreover, IoT can be 
combined with DL algorithms. This study applied 
IoT technology to the monitoring of MSSP to 
achieve real-time monitoring of salt spray 
environments and then optimized the detection 
accuracy and robustness by improving the 
YOLOv5l algorithm (IYOLOv5l) and introducing 
Spatial-to-Depth Convolution (SPD-Conv) and 
Convolutional Block Attention Module (CBAM) to 
obtain an MSSP detection solution based on the 
IoT using IYOLOv5l, named IMSDPS-IY5l. The 
proposed Ocean Salt Spray Detection (OSSD) 
technology was expected to provide critical 
technical support for the efficient operation of 
marine equipment, significantly improve the 

accuracy of MSSP detection, and provide strong 
guarantees for the safety and efficiency of 
offshore operations. This study also had the 
potential to promote the in-depth application of 
the IoT and deep learning technology in the 
marine environment, providing new research 
ideas and technological paths for the broad 
scientific and industrial sectors, which not only 
had important theoretical value but also had 
broad application prospects and a profound 
social impact. 
 
 

Materials and methods 
 
The proposed IMSPDS-IY5l environmental 
monitoring system 
This study applied IoT technology to particle 
detection in Marine Salt Spray Environments 
(MSSE) and built an IMSPDS-IY5l system. The 
OSSD system was constituted of four layers 
including perception, network, application, and 
output (Figure 1). The main function of the 
perception layer was to collect parameters such 
as temperature, humidity, and pH value of the 
salt spray environment through sensing devices 
and used target detection and recognition 
technology to identify salt spray particles. The 
network layer was responsible for receiving data 
obtained by the perception layer. In the 
application layer, the data received in the 
network layer was transmitted to the cloud 
server through switches and routers [16]. The 
output layer interacted with humans through a 
web application to achieve real-time monitoring 
of salt mist particles at sea. In the design of the 
OSSD system perception layer, a salt spray 
environment could cause corrosion to the 
equipment, so it was necessary to add protective 
measures such as spraying anti-corrosion paint 
and galvanizing to the equipment. In the 
selection of sensors, it was necessary to ensure 
the accuracy of the sensors, and the sensors 
themselves needed to have storage functions, 
while also considering the economic efficiency of 
the sensors. Therefore, TH10S-B-PE temperature 
and humidity sensor (Shenzhen Inst Technology 
Co., Ltd., Shenzhen, Guangdong, China), the MIK- 
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Figure 1. The architecture design of the IMSPDS-IY 51 system. 
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Figure 2. The layout and structure of the sensors. 

 
 
PH2.0 pH meter (Hangzhou Mike Sensor 
Technology Co., Ltd., Hangzhou, Zhejiang, China), 
and the SJG-3083 sodium chloride concentration 
meter (Shanghai Boqu Instrument Co., Ltd., 
Shanghai, China) were selected in this research. 
All sensors used the Recommended Standard 485 
(RS-485) interface and Modbus Remote Terminal 
Unit (RTU) as the network transmission protocol. 
The data collected by pH meters and sodium 
chloride concentration meters were the current 
environmental data. When detecting 
temperature and humidity, the closer the sensor 
was to the test sample, the closer the measured 
temperature and humidity were to the specific 
temperature and humidity of the current 

environment. The layout of the sensors was 
shown in Figure 2. The monitored environmental 
indicators could better reflect the environmental 
conditions. For different scenarios, simply 
changing the parameters could obtain the 
corresponding environmental state. In the design 
of the network layer, it was essential to ensure 
that the data transmission line functioned 
correctly and reliably and that the data 
transmitted was of high integrity. At the same 
time, when building a network, the 
characteristics of the environment should be 
considered, and it was needed to ensure that the 
service life of the equipment was as high as 
possible. Due  to  the  inconvenience  of  wiring at 
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Figure 3. Data flow and processing process of the monitoring data. 

 
 
sea, wireless communication should be chosen. 
There were many monitoring points and 
parameters for offshore facilities, and different 
compartments were separated, and there were 
also metal pipelines between compartments. 
Conventional wireless transmission networks 
could cause signal interruptions or transmission 
delays. When wireless signal transmission could 
not be achieved through the deployment of 
equipment compartments, heterogeneous 
networks could be used for layout. Therefore, 
this study constructed the network layer through 
multiple sensors, which included the ZigBee 
network used to obtain data from sensors in the 
perception layer, LoRa used as a wide area 
network to connect various sensor networks, a 
wireless local area network built through WIFI to 
connect the sensor network to the wide area 
network, data streams from multiple devices 
being exchanged and forwarded to the target 
devices through network switches to achieve 
communication between devices, and 
connecting to external servers through a router 
to achieve information sharing. The application 
layer was responsible for managing and 
monitoring data including data storage, output 
processing, and detecting web applications. The 
data flow and processing process of monitoring 
data were shown in Figure 3. After obtaining the 
data from the router, the detection data was 
saved in the MySQL server database using OPC 
server information system software through the 

server IP port number and virtual serial port. The 
database was then connected to the web 
development environment through the MySQL 
server driver. In a web development 
environment, the detection data was first 
mapped using the Mybatis persistence layer 
framework, and then processed in the 
Springboot framework. The Hypertext Markup 
Language and ECharts data visualization icon 
library, asynchronous JavaScript, and XML web 
development technology were applied to achieve 
secondary development and web page refresh. 
After secondary development and debugging of 
all source files for detection data, it was 
necessary to check for errors. After confirming 
the accuracy, the detection data were packaged 
into a war compressed file through packaging 
operation and deployed to the Tomcat web 
server. The detection data was visualized using a 
web browser. 
 
OSSD technology based on IYOLOv5l model 
In MSSE monitoring, rapid and accurate 
detection of salt spray particle content is crucial 
for evaluating the corrosion resistance of 
offshore equipment in salt spray environments 
[17]. The corrosion resistance helps 
manufacturers understand the service life and 
performance of products in marine 
environments, providing a basis for product 
improvement and upgrading. Therefore, this 
study aimed to design a particle detection 
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algorithm suitable for MSSEs to accurately obtain 
salt spray content. YOLOv5l was used for the 
detection of salt spray particles, which was a 
variant of the YOLOv5 algorithm and adopted a 
larger model and deeper network structure 
based on YOLOv5, improving the model’s 
robustness. The structure of YOLOv5l mainly 
contained a backbone network and multiple 
pyramid layers. The backbone was utilized to 
extract image features, while the feature 
pyramid layer could detect targets of different 
sizes at various scales. To further lift the 
performance of the YOLOv5I model, SPD-Conv 
was introduced in this study to capture fine-
grained features. SPD-Conv is an innovative 
spatial encoding technique that can process 
images more effectively. In the SPD-Conv 
module, sub-features of output features could be 
obtained by slicing and calculated as follows. 

 

1, 1 [ 1: , 1: : ]scale scalef X scale scale scale S scale− − = − −   

(1) 
 

where scale  was the scaling factor. X  was the 

feature. 
1, 1scale scalef − −

 was the sub-features of the 

feature. After slicing, SPD-Conv concatenated all 
sub-features to obtain the output features of the 
input features in that layer. Meanwhile, in the 
cross stage of YOLOv5I, the Bottleneck 
Transformer module was added to the local 
connection module and combined into a new 
module. In this new module, three spatial 
convolutional layers were replaced with Multi-
Head Attention (MHA) in the convolutional layer 
of the backbone network. By using self-attention 
to dynamically capture the intrinsic structure and 
semantic information of different input 
information, the correlation between various 
positional information could be obtained. In the 
Self-Attention Mechanism (SAM), after a vector 
was input into it, a function was learned to 
predict the output of any input vector as shown 
below. 
 

1

1

( )
( )
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f x y

K x x=
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=

−

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       (2) 

where ( )f x  was the learned function. i  and j  

were the i -th and j -th input vectors. n  and iy  
were the total number and output of input 
vectors. K  was the weight. When calculating the 
output of self-attention, the embedding 
operation was first performed to transform the 
input vector into an intermediate vector. Then, 
the intermediate vector was multiplied by the 
weight matrix to obtain the query, value, and the 
key that matched each value as shown below. 
 

i q i

i k i

i v i

q W a

k W a

v W a

 =


=


=

       (3) 

 

where ia  was the intermediate vector. iq  was 

the query. iv  was the value. ik  was the key. 𝑊𝑞, 

𝑊𝑘 , and 𝑊𝑣  were the weight matrices of the 
query, key, and value, respectively. Among them, 
the query was used to match with other words, 
i.e. the query target. The key was used to match 
the query. Queries, keys, and values could be 
transformed into matrix form as shown in 
equation (4). 
 

q

k

v

Q W I

K W I

V W I

 =


=


=

       (4) 

 
where 𝐼  was the matrix composed of 
intermediate vectors. The output of the SAM was 
shown in equation (5). 
 

( , , ) ( )
T

k

QK
Attention Q K V softmax V

d
=        (5) 

 
where ( , , )Attention Q K V  was the output of the 

SAM. kd  was the dimension of the query. 

softmax  was the activation function. By 

combining multiple single SAMs to form an MHA 
mechanism, integrating the outputs of all single 
SAM through concatenation operations, and 
then mapping the concatenated results through 
a  weight  matrix,  the  output  of  MHA  could  be 



Journal of Biotech Research [ISSN: 1944-3285] 2025; 20:13-25 

 

19 

 

 
 
Figure 4. Schematic diagram of MHA mechanism structure. 

 
 
calculated as follows. 

 

1 0( , , ) ( ,..., ,..., )i hMultiHead Q K V Concat head head head W=   (6) 

 
where ( , , )MultiHead Q K V  was the output of 

MHA. hhead  was the h -th self attention. 0W  was 

the weight matrix for adjusting the output 
dimension. SAM and MHA mechanism structures 
were shown in Figure 4. To improve the feature 
extraction capability of YOLOv5l network, this 
study introduced CBAM in the downsampling 
module of the network. The features were input 
into the regular convolution block to obtain the 
intrinsic features of the input features as shown 
in equation (7). 
 

3 3( ( ( ) ))cvY Mish B f X b= +        (7) 

 

where cY  was the intrinsic feature of the input 

data. 3 3f   was 3 3  convolution operation. B  

was the batch normalization layer. Mish  was the 
activation function. b  was the bias. c  was the 
number of channels. The residual blocks were 
then added after the convolution module to 
further obtain features as shown in equation (8). 
 

1 1

1 1

( ( ( )))

( ( ( )) )

c

c

Y Mish B f Y

Y Mish B f Y Y





 =


 = +

      (8) 

 
where Y   was the feature after residual 
processing. Then, using deep convolution, the 
output feature map was linearly computed to 

obtain feature information as shown in equation 
(9). 
 

( ), [1, ], [1, ]cv cvY Y c m v s =          (9) 

 

where cvY  was the feature obtained from the v -

th linear calculation of the feature on the c -th 

channel. cv  was a linear computational 

function. The acquired features were then 
compressed in the CBAM module. The multi-
layer perceptron was used to output the 
processed feature vectors. The feature vectors 
were summed and calculated through activation 
functions to obtain channel attention as shown in 
equation (10). 
 

1 2 1 2 max( ) ( ( ( )) ( ( )))

( )

c c

C avg

C

M X W W F W W F

F M X X

 = +


 = 

    (10) 

 

where 1W  and 2W  were the weight matrices of 

two fully connected layers in a multi-layer 

perceptron, respectively. c

avgF  was the output of 

the average pooling layer. max

cF  was the output of 

the maximum pooling layer.   was the sigmoid 
activation function.   was element wise 
multiplication. F   was the feature map. A 
convolution of 7 7  was used to further process 
the features and obtain a spatial attention 
feature map with the calculation below. 
 

7 7

max( ) ( ([ ; )])s s

avgM F f F F  =      (11) 
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Figure 5. Schematic diagram of the YOLOv5l technical flow. 

 
 
where F   was the spatial attention feature map. 

3 3f   was the 7 7  convolution operation. The 

output features could be obtained by multiplying 
the feature map and spatial feature map element 
by element as shown in equation (12). 
 

( )F M F F =      (12) 

 
where F  was the final output result. The 
designed IYOLOv5l process was shown in Figure 
5. To verify the superiority of the performance of 
the proposed IYOLOv5l model, experiments were 
conducted using Focal Loss for Dense Object 
Detection (RetinaNet) (https://github.com/ 
MegEngine/Models), Region-based CNN for 
Instance Segmentation (Mask R-CNN) (https:// 
github.com/matterport/Mask_RCNN), Region-
based Full Convolutional Network (R-FCN) 
(https://github.com/daijifeng001/R-FCN), and 
Scalable and Efficient Object Detection 
(EfficientDet) (https://github.com/zylo117/Yet-
Another-EfficientDet-Pytorch) algorithms for 
horizontal comparison. The above algorithms 
were implemented using Python 3.8 
(https://www.python.org) on Windows 10 
operating system equipped with Intel Core i9-
13900H CPU, GeForce RTX 3080 Ti graphics 
processor, 32 GB of running memory, and 12 GB 

of graphics card memory. The maximum iteration 
for the IYOLOv5l was set to 300, the batch size 
was 8, the weight decay coefficient was 0.0005, 
and the initial learning rate was 0.01. To further 
verify that the proposed IMSPDS-IY5l technology 
also performed similarly well in practical 
applications, the improved YOLOv8 fault 
detection scheme [18], You Only Look Once-
Gaussian Soft Selection (YOLO-GSS) [19], and 
YOLO_CBAM [20] were employed to compare 
with IMSPDS-IY5l. Diagnostic accuracy, anti-
interference ability, sensitivity, real-time 
performance, and diagnostic speed were taken 
as the evaluation indicators. To verify the 
effectiveness of the IYOLOv5l algorithm, this 
study compared to YOLOv5l with the same 6,000 
data samples from marine salt spray particle 
database (MSSPD), which included information 
on the concentration, size distribution, shape 
characteristics, and chemical composition of salt 
spray particles. Data were collected from 
offshore experimental platforms, laboratory 
simulated salt spray environments, historical 
monitoring data, etc. and covered a period of 3-5 
years. 
 
 

Results and discussion 
 

https://github.com/%20MegEngine/Models
https://github.com/%20MegEngine/Models
https://github.com/daijifeng001/R-FCN
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
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Figure 6. Comparison of loss function value (a) and accuracy (b) of different algorithms. 

 
 
Performance of IYOLOv5l model 
Compared with other detection algorithms, the 
IYOLOv5l completed lower values in the three 
evaluation indicators of Mean Square Error 
(MSE), Root Mean Square Error (RMSE), and 
Mean Absolute Error (MAE). The MSE of IYOLOv5l 
was 0.000052, which was significantly lower than 
RetinaNet's 0.000125, Mask R-CNN's 0.000131, 
R-FCN's 0.000091, and EfficientDet's 0.000073. 
Similarly, on RMSE and MAE, IYOLOv5l also 
demonstrated significant superiority, indicating 
that the predicted values during training were 
closer to the true values (Table 1). The results 
verified that the IYOLOv5l model was indeed 
superior in performance to other popular object 
detection algorithms.  
 
 
Table 1. Performance comparison of different models. 
 

Model MSE RMSE MAE 

RetinaNet 0.000125 0.0132 0.0023 
Mask R-CNN 0.000131 0.0123 0.0064 
R-FCN 0.000091 0.0081 0.0054 
EfficientDet 0.000073 0.0083 0.0043 
IYOLOv5l 0.000052 0.0052 0.0011 

 
 
The accuracy and loss value of the proposed 
model 
Four algorithms of Mask R-CNN, R-FCN, 
EfficientDet, and IYOLOv5l were compared for 
the performance accuracy and loss value. The 

results showed that the proposed IYOLOv5l 
performed well during the training process with 
its loss value rapidly decreasing from the 
beginning of training and eventually stabilizing at 
a low level of 0.05 (Figure 6a). In contrast, the loss 
function values of Mask R-CNN, R-FCN, and 
EfficientDet tended to approach 0.38, 0.23, and 
0.31, respectively, significantly higher than that 
of IYOLOv5l. The results demonstrated that the 
accuracy of IYOLOv5l rapidly improved from the 
early training stage and eventually converged to 
0.05, while the loss function values of Mask R-
CNN, R-FCN, and EfficientDet algorithms 
converged to 0.38, 0.23, and 0.31, respectively 
(Figure 6b).  
 
Comparison of YOLOv5l akgorithm before and 
after improvement 
The results showed that the accuracy of the 
YOLOv5l algorithm before improvement was 
around 75% on average when the sample size 
was 1,000. As the samples increased, its accuracy 
also steadily improved. When the samples 
reached 5,000, the accuracy of the algorithm 
stabilized at around 85% (Figure 7a). The 
improved IYOLOv5l algorithm had a high 
accuracy level when the sample size was 1,000. 
When the sample size reached 5,000, its accuracy 
stabilized at around 96% (Figure 7b). These 
results indicated that the IYOLOv5l algorithm had 
shown significant advantages in accuracy, 
performance stability, and learning efficiency, 
therefore the improved method was successful. 
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Figure 7. The accuracy changes of YOLOv5l before (a) and after (b) the improvement. 

 
 
Table 2. Comparison of the practical application effects of different test schemes. 
 

Schemes 
Diagnostic 

accuracy (%) 
Anti-interference 

capability (dB) 
Sensitivity 

(mV) 
Real-time performance  

(ms/frame) 
Diagnostic speed  

(frame/s) 

Improved YOLOv8 85 28 450 120 15 
YOLO-GSS 88 30 480 100 20 
YOLO_CBAM 90 34 520 95 25 
MSPDS-IY5l 92 36 550 80 30 

 
 
Application results of IMSPDS-IY5l scheme 
The results of 100 repeated experiments on 
detecting MSSP in actual environments 
demonstrated that the MSPDS-IY5l scheme 
showed superiority in all evaluation indicators 
with its diagnostic accuracy as high as 92%, which 
was significantly higher than the other three 
schemes, indicating that this proposed scheme 
had a stronger recognition ability for MSSP in 
practical applications (Table 2). Meanwhile, the 
anti-interference ability of MSPDS-IY5l was also 
the strongest one, reaching 36 dB, which meant 
that the scheme could work more stably in the 
face of complex environmental interference. In 
addition, MSPDS-IY5l had the highest sensitivity 
at 550 mV, indicating a more sensitive detection 
of MSSP. In terms of real-time performance, 
MSPDS-IY5l only took 80 ms to process each 
frame of the image with the diagnostic speed 
reaching 30 frames per second, which was the 
best among all compared schemes, ensuring 
faster response and diagnosis in practical 
applications. Through IoT technology, real-time 
and accurate data could be collected from the 

marine environment including salinity, 
temperature, humidity, etc. These data could 
help environmental equipment calibrate and 
adjust its operating parameters more accurately, 
optimize the operating mode and energy 
consumption of the equipment, and improve 
energy utilization efficiency. This study utilized 
improved YOLOv8, YOLO-GSS, YOLO_CBAM, and 
MSPDS-IY5l technology for 96 Marine 
Communication Base Stations (MCBSs). The 
energy utilization efficiency of each base station 
was used as the evaluation index. The results 
showed that the average energy utilization rates 
(AEURs) of 24 MCBS in each Improved YOLOv8, 
YOLO-GSS, YOLO_CBAM, and MSPDS-IY5l 
technologies were 43.3%, 45.6%, 38.4%, and 
71.2%, respectively (Figure 8). IoT technology 
could monitor the operational status of devices 
in real-time and detect abnormal situations 
promptly. To explore the impact of MSPDS-IY5l 
technology on environmental equipment, this 
study conducted comparative experiments. The 
efficiency and accuracy of environmental 
equipment    were    evaluation    indicators.    The 



Journal of Biotech Research [ISSN: 1944-3285] 2025; 20:13-25 

 

23 

 

20

60

80

100

0

40

E
n

e
rg

y
 u

ti
li

za
ti
o

n
 e

ff
ic

ie
n

cy
 (

%
)

12840
Sample number

16 20 24

(a) Improved YOLOv8

20

60

80

100

0

40

E
n

e
rg

y
 u

ti
li

za
ti
o

n
 e

ff
ic

ie
n

cy
 (

%
)

12840

Sample number

16 20 24

(b) YOLO-GSS

20

60

80

100

0

40

E
n

e
rg

y
 u

ti
li

za
ti

o
n

 e
ff

ic
ie

n
cy

 (
%

)

12840
Sample number

16 20 24

(c) YOLO_CBAM
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(d) MSPDS-IY51  
 
Figure 8. The average energy utilization rates of each scheme on the energy efficiency of MCBSs. 
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Figure 9. Changes in working efficiency (a) and accuracy (b) of each sample before and after the application of MSPDS-IY51 technology. 

 
 
results demonstrated that MSPDS-IY5l 
technology had a significant positive impact on 
environmental equipment. Through comparative 
analysis, the application of this technology had 
significantly improved the work efficiency and 
accuracy of the samples. The work efficiency had 

increased from 70% to over 80%, which meant 
that more work tasks could be completed within 
the same time, thereby improving the overall 
operational efficiency of environmental 
equipment (Figure 9). The work accuracy had also 
significantly improved, jumping from 60% to over 
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85%, indicating that MSPDS-IY5l could 
significantly reduce work errors and enhance the 
stability and reliability of environmental 
equipment. MSPDS-IY5l had an obvious effect on 
improving the efficiency and accuracy of 
environmental equipment, demonstrating the 
practical application value of this technology. 
 
 

Conclusion 
 

This study proposed an IMSPDS-IY5l detection 
scheme to address the challenges faced by 
equipment in MSSEs. By introducing SPD-Conv 
and CBAM, the accuracy and robustness of the 
detection model had been greatly improved. The 
results showed that the IYOLOv5l model achieved 
significant advantages in MSE, RMSE, and MAE 
indicators, reaching 0.000052, 0.0052, and 
0.0011, respectively. In practical applications, the 
IMSPDS-IY5l scheme outperformed other 
comparative schemes in diagnostic accuracy, 
anti-interference ability, sensitivity, etc., 
especially in terms of energy utilization 
efficiency, achieving an AEUR of 71.2%. 
Meanwhile, work accuracy had been significantly 
improved, jumping from 60% to over 85%, 
indicating that MSPDS-IY51 technology could 
significantly reduce work errors. MSPDS-IY51 
only took 80 ms to process each frame of the 
image, and the diagnostic speed reached 30 fps, 
which was the best among all schemes, ensuring 
faster response and diagnosis in practical 
applications. This study provided an effective 
means for equipment monitoring in MSSEs and 
new ideas for the application of IoT in the field of 
environmental monitoring. Although significant 
achievements had been made in marine OSSD 
research, the detection performance of the 
model under extreme environmental and 
weather conditions still needed further 
validation and optimization. 
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