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Depression is a common mental health disorder, and early identification and diagnosis are crucial to improve 
treatment outcomes. In this study, a deep learning model called Multimodal Attention Fusion Network (MAFN) 
was proposed to assist in the early diagnosis of depression by integrating facial expressions, body language, and 
voice data. By using public datasets from AffectNet, CREMA-D, and MPII Human Pose, as well as collecting and 
evaluating data from 10 patients suspected of early depression, the effectiveness of the MAFN model in 
identifying and predicting emotional changes in patients with depression were validated. The results showed that 
MAFN demonstrated significant improvements in accuracy, precision, recall, and F1 value compared with the 
unimodal model, demonstrating its advantages in processing multimodal data. The proposed model not only 
improved the accuracy of early diagnosis of depression, but also provided clinicians with more reliable auxiliary 
tools, which helped to intervene and treat patients with depression in a timely manner, thereby improving 
patients' treatment outcomes and quality of life. 
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Introduction 
 
According to the World Health Organization. 
depression is a common mental illness that 
affects more than 300 million people worldwide, 
which not only causes great psychological pain to 
patients, but can also lead to serious social 
dysfunction including reduced work ability and 
impaired interpersonal relationships [1]. In 
recent years, with the development of computer 
vision and artificial intelligence technologies, 
especially deep learning, it has become possible 
to assist in the diagnosis and monitoring of 
depression by analyzing non-verbal behavior [2]. 
In the face of the global mental health crisis, the 
prevalence of depression has continued to 

increase and has become a public health issue 
that cannot be ignored, especially among 
adolescents and young adults. This trend has 
aroused deep concern from all walks of life. 
Depression not only erodes individual mental 
health, leading to reduced productivity and 
quality of life, but also increases the burden on 
the medical system and has significant negative 
socioeconomic impacts. During the COVID-19 
pandemic, social isolation, life stress and 
inequality have been particularly prominent. 
People have been under unprecedented 
psychological pressure. The risk of depression 
has increased, and the number of depression 
episodes has increased year by year across the 
country [3]. The diversity of depression is 
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reflected in individual differences in symptoms 
and experiences, which means that, even under 
similar conditions, the manifestations of 
depression may vary greatly. This complexity 
stems from the interweaving of multiple factors 
such as cultural background, gender, age, and 
genetic predisposition, which together affect the 
clinical manifestations of depression and 
patients' treatment response. Therefore, there 
are many challenges in finding universally 
applicable diagnostic criteria and treatment 
methods [4]. 
 
Traditional depression diagnostic methods 
including clinical interviews and self-assessment 
questionnaires, although they play an important 
role in assessing patients' psychological states, 
have obvious limitations. The interview process 
may be affected by the patient's level of 
consciousness, expression ability, and recall bias, 
making it difficult to capture subtle emotional 
changes. The accuracy of self-assessment 
questionnaires relies on the patient's self-insight, 
and these questionnaires sometimes cannot truly 
reflect the patient's emotions and state because 
the patient may deny, feel ashamed or have 
cognitive biases. In view of this, exploring more 
objective and comprehensive assessment 
methods has become an urgent need in the field 
of mental health research [5]. Studies have 
shown that patients with depression exhibit 
specific patterns in non-verbal behavior. For 
example, they may smile less, make less eye 
contact, lower their voices, and move more 
slowly. These changes reflect the patient's 
internal emotional state and may also be related 
to neurobiological mechanisms [6]. In recent 
years, machine learning and deep learning 
techniques have been widely used in the 
automatic recognition of nonverbal behaviors 
including facial expression recognition, speech 
emotion analysis, and gesture recognition. These 
techniques automatically extract and learn 
complex features by analyzing large amounts of 
training data, achieving high-precision 
classification and prediction. The deep 
convolutional neural networks (CNNs) are used 
to recognize depressive expressions from videos, 

while recurrent neural networks (RNNs) are used 
to capture the changes in emotions over time [7]. 
Although deep learning has shown great 
potential in analyzing nonverbal behaviors 
related to depression, most current studies focus 
on the analysis of a single modality such as facial 
expression or speech only, ignoring the value of 
integrating multimodal information. In addition, 
there is a lack of systematic research on the 
psychological integration changes of nonverbal 
behaviors of patients with depression over time, 
i.e. how these behaviors evolve during 
treatment.  
 
This study aimed to fill this gap by using deep 
learning algorithms to explore the integrated 
change patterns of facial expressions and body 
language in patients with depression and their 
relationship with the improvement of patients' 
psychological state. The study used deep learning 
algorithms, especially CNNs and RNNs to analyze 
the multimodal nonverbal behaviors of patients 
with depression. Facial expression recognition, 
voice emotion analysis, and gesture recognition 
technology were adopted to build a 
comprehensive model to more comprehensively 
assess the patient's depressive state. By 
integrating multimodal non-verbal behavior 
data, this study was able to improve the accuracy 
and sensitivity of depression diagnosis and 
provide support for clinical decision-making. In 
addition, the results of the study could promote 
the development of remote monitoring and early 
intervention, help early detection and treatment 
of depression, thereby improve patients' quality 
of life and social function. 
 
 

Materials and methods 
 
Data collection and processing 
The data used in this study were obtained from 
multiple sources including AffectNet, a large-
scale facial expression dataset that provides a 
wide range of annotated facial expressions 
(https://ibug.doc.ic.ac.uk/resources/affectnet/) 
[7]. CREMA-D, a dataset for emotional speech 
that includes recordings of actors expressing 
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various emotions (https://github.com/Cheyney 
ComputerScience/CREMA-D) [8]. MPII Human 
Pose, a dataset for human posture analysis that 
contains annotated images of people in various 
poses (https://human-pose.mpi-inf.mpg.de/) [9]. 
To ensure diversity and representativeness, 
individual data from different cultural 
backgrounds, age groups, genders, and severity 
of condition were collected. These datasets 
provided richly labeled information for model 
training, enabling us to build a robust and 
comprehensive model for analyzing nonverbal 
behaviors associated with depression. Sample 
selection followed a rigorous screening process 
to ensure the quality and relevance of the data. 
First, data from depressed patients were 
screened by clinical diagnostic criteria including 
the Diagnostic and Statistical Manual of Mental 
Disorders, Fifth Edition) (DSM-5) diagnostic 
criteria for depression. The non-depressed 
control group consisted of individuals in good 
mental health with no history of mental illness. 
To ensure diversity in the data, the sample was 
selected across different age, gender, and ethnic 
backgrounds, while ensuring a balanced sample 
size in each group to avoid problems of category 
imbalance [10]. There were 1,000,000 images of 
facial expression collected from 2017 to 2019 
retrieved from AffectNet, 7,442 audio files of 
emotional speech recordings collected in 2014 
from CREMA-D, and 25,000 human pose images 
from 2014 to 2016 obtained from MPII Human 
Pose, respectively. All procedures were approved 
by the Institutional Review Board (IRB) of Beijing 
Normal University (Beijing, China) (Approval No. 
IRB-2023-001). All participants signed informed 
consent to ensure that the use of their data 
complies with ethical standards and laws and 
regulations. Data preprocessing is a key link to 
ensure the efficiency and accuracy of model 
training. The facial expression images were 
preprocessed by first localizing the facial region 
through the facial detection algorithm, and then 
performing the size normalization, grayscale 
conversion, and luminance normalization to 
eliminate the effects of illumination and angle 
changes. The speech data were preprocessed by 
removing muted segments, reducing noise, and 

normalizing volume before converting them to 
spectrograms or Mel Frequency Cepstrum 
Coefficients (MFCCs) to capture acoustic 
features. The posture preprocessing included the 
extraction of body language data using a skeleton 
keypoint detection algorithm followed by 
coordinate normalization and translation 
correction to remove the effects of camera 
position and rotation. To increase the robustness 
and generalization of the model, data 
enhancement techniques such as randomly 
rotating, flipping, and scaling the images, as well 
as applying slight noise and speed variations 
were used to the speech data, which helped the 
model to be more stable in the face of new data 
and reduce the risk of overfitting [11, 12]. 
  
Deep learning models 
The proposed model used Multi-modal Attention 
Fusion Network (MAFN) architecture, which 
consisted of three main modules including 
modality-specific encoder, attention mechanism, 
and fusion layer. Modality-specific encoders 
included that each modality (facial expression, 
body language, and sound) had a separate 
encoder for extracting its intrinsic features. For 
facial expression image data, a pre-trained 
ResNet for feature extraction was used, while, for 
sound data, a Long Short-Term Memory (LSTM) 
based network was used to capture temporal 
properties and, for body language, a Graph 
Convolutional Network (GCN) was applied to 
analyze the spatial relationships between key 
points of the skeleton. The attention mechanism 
covered that, considering that different 
modalities might contribute differently to 
depression diagnosis in different contexts, a 
multi-head self-attention mechanism was 
introduced to dynamically assign weights to the 
features of each modality, which helped the 
model to utilize the information more 
intelligently in the fusion stage and improve the 
overall performance. The fusion layer was 
responsible for integrating features from 
different modalities to generate a 
comprehensive representation. A gated fusion 
unit was used, which could selectively fuse 
features based on the attention weights of each 
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modality, thus reducing redundant information 
and improving the efficiency and robustness of 
the model [13, 14]. To extract features of facial 
expressions from image data, a pre-trained 
ResNet model was used to solve the gradient 
vanishing problem and degradation problem in 
deep networks by introducing a residual learning 
framework, which enabled the model to learn 
deeper features. Assuming that the input image 

was I, its feature vector IF  could be computed as 

shown in equation 1 [15]. 
 

( )IF ResNet I=                    (1) 

  
where ResNet represented the entire network 
structure including multiple residual modules, 
each containing two layers of CNNs and a jump 
connection for passing the input directly to the 
output, thus avoiding gradient vanishing. The 
final feature vector v  contained rich details of 
facial expressions. For the temporal 
characterization of sound data, a network-based 
LSTM was used, which was a special kind of RNN 
that remembered information in long sequences. 

The feature vector ( )SF t  of the sound data S(t) at 

each time t could be calculated by LSTM updating 
state as shown below [16]. 

 

1 1( ) ( ( ), , )S t tF t LSTM S t h c− −=              (2) 

 

where 1th −  and 1tc −  were the hidden state and 

unit state of the previous time step, respectively. 
The LSTM operation included the computation of 
input gates, forgetting gates, and output gates to 
ensure that the model effectively memorized 
important information and ignored irrelevant 
information. GCN was used for body language 
analysis, which was able to perform 
convolutional operations on graph-structured 
data and was particularly suitable for dealing 
with the spatial relationships between key points 
of the skeleton. Let the key points of the limb 
language be the graph G = (V, E), where V was the 
set of vertices and E was the set of edges, then 

the feature vector LF  could be defined as follows 

[17]. 

( , )LF GCN G X=               (3) 

 
where X was the node feature matrix. GCN 
updated the features of each node by 
aggregating the information of neighboring 
nodes, and the specific calculation process 
involved the Laplace matrix L and the weight 
matrix W, which were specified in equation 4. 
 

ˆ
LF AXW=                (4) 

 

where Â  was a normalized adjacency matrix that 

captured the correlation between nodes in the 
graph. To dynamically assign weights to the 
features of different modalities, a multi-head 
self-attention mechanism was introduced. 
Suppose there were m modalities, and the 

feature vector of each modality was ( )iF , which 

was first converted into the query ( )iQ with the 

key ( )iK , and the summation value ( )iV as 

specified in equations 5 - 7 [18]. 
 

( ) ( ) ( )i i i

QQ F W=               (5) 

 
( ) ( ) ( )i i i

KK F W=               (6) 

 
( ) ( ) ( )i i i

VV F W=                             (7) 

 

where 
( ) ( ) ( )( , , ) i i i

Q K VW W W  were the learnable 

weight matrix. The attention score ( )iA  was 

calculated as below. 
 

( ) ( ) ( )( ( ) / )i i i T

kA softmax Q K d=             (8) 

 

where kd  was the dimension of the key vector. 

The weighted feature vector was shown in 
equation 9. 
 

( ) ( ) ( )i i iF A V =                (9) 

 
The multi-head attention mechanism computed 
multiple attention heads in parallel by finally 
stitching them together and mapping them to the 
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output space through a fully connected layer OW  

as specified in equations 10 - 11. 
 

1( ,..., )att

h OF Concat head head W=           (10) 

 
( ) ( ) ( )(  , , )i i i

ihead Attention Q K V=           (11) 

 
The goal of the fusion layer was to integrate 
features from different modalities to generate a 
comprehensive representation. This task was 
accomplished using a gated fusion unit (GFU), 
which was able to selectively fuse features based 

on the attention weights ( )iA  to reduce 

redundant information. Let the weighted 

features be ( )iF , the fusion operation of the 

GFU was shown below. 
 

(1) ( ) (1) ( )( ,..., , ,..., )m m

fusedF GFU F F A A =   (12) 

 
where the GFU controlled the fusion ratio 
through the gating function G as specified in 
equations 13 - 14. 

 
( ) ( ) ( ) ( ) ( ) ( )( , , , ) ( [ ; ])i j i j i j

gG F F A A W A A  =    (13) 

 
( ) ( ) ( )(1 ( [ ; ]))i i j

gF W A A + −           (14) 

 
The GFU was able to selectively fuse the features 
of all modes to generate the final integrated 

representation 𝐹𝑓𝑢𝑠𝑒𝑑 . The integrated 

representation  fusedF was obtained by further 

processing based on the output of the gated 
fusion unit. The fused features could be mapped 
to a new representation space through a fully 

connected layer fuseW  and an activation function

  , which was more suitable to be used as an 

input to the final classifier as specified below. 
 

( )final fuse fused fuseF W F b= +            (15) 

 

where fuseb  was the bias term and   could be 

ReLU, tanh, or other activation functions 
depending on the design of the model and the 

task requirements. From finalF , the probability 

distribution of each category for the final 
decision or categorization was obtained through 
a categorization layer, usually another fully 
connected layer plus a Softmax function as 
specified below. 
 

( )cls final clsP Softmax W F b= +            (16) 

 

where clsW  and clsb  were the weights and bias 

terms of the categorization layer. P was a vector 
of predicted probability distributions with each 
element corresponding to the predicted 
probability of a category. 
 
Experimental design 
The experiments were executed on a high-
performance computing cluster to ensure 
sufficient resources to support the demands of 
large-scale data processing and model training. 
The hardware software configurations used for 
efficient training and inference of the model 
included Intel Xeon E5-2698 v4 CPUs, 256 GB of 
DDR4 RAM, 1 TB of NVMe SSD, NVIDIA Tesla V100 
GPU, Ubuntu 20.04 LTS Operating System 
(Canonical Ltd, London, UK), TensorFlow 2.4.0 
(Google, Mountain View, California, USA), the 
PyTorch 1.7.0 deep learning framework 
(https://pytorch.org/), and Python 3.8 
(https://www.python.org/). The aim of proposed 
MAFN was to identify and understand complex 
emotional states, particularly the diagnosis of 
depression, by integrating facial expression, body 
language and voice data. This integration was 
accomplished through a well-designed 
multimodal analysis process that included cross-
modal feature extraction, a multi-head self-
attention mechanism, and the use of gated fusion 
units (Figure 1). The datasets were randomly 
divided into training, validation, and testing sets 
with the proportions being set to 70%, 15%, and 
15%. In addition, a K-fold cross-validation 
strategy was implemented to further validate the 
stability of the model performance. In the 
training phase, the batch gradient descent 
method   and   Adam   optimizer   were   used   to 
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Figure 1. Multimodal framework. 

 
 
minimize the loss function that typically included 
cross-entropy loss and regularization terms to 
balance the accuracy and complexity of the 
model. During the training, the performance 
metrics on the validation set were monitored 
including accuracy, precision, recall, and F1 score 
to prevent overfitting and adjust the model when 
appropriate. Ten (10) patients from Beijing 
People’s Hospital (Beijing, China) with suspected 
early depression aged from 25 to 45 years with a 
balanced gender distribution were selected for 
this study. Each patient consented to participate 
in the study and authorized the collection of data 
on their facial expressions, body movements and 
voice characteristics. Data collection took place 
in a natural environment to ensure authenticity 
and validity of the data. A Sony HDR-CX405 high-
definition camera (Sony Corporation, Tokyo, 
Japan) was utilized to record each patient's facial 
expressions and body movements, while voice 
characteristics including intonation, speech rate, 
and pauses were captured using Boya BY-VM300 
recording equipment (Shenzhen Boya 
Technology Co., Ltd., Shenzhen, Guangdong, 

China). The collected multimodal data were fed 
into the MAFN model, which was fully trained to 
recognize features associated with early 
depression. The model generated a risk score for 
each patient and the specific contribution of each 
modality to the risk score. The proposed MAFN 
was compared with the CNN, LSTM, and TMM 
models for its performance evaluation. 
 
 

Results 
 

The accuracy of different modalities on the 
expression and action recognition task  
By comparing the accuracies of the training set, 
validation set, and test set, the recognition effect 
of multimodal fusion was significantly better 
than that of a single modality, which suggested 
that combining multiple sources of information 
including facial expressions, body movements, 
and audio emotions could more accurately 
recognize an individual's emotional state (Table 
1). However, the accuracy of each modality 
decreased  from  the  training  set  to  the test set, 



Journal of Biotech Research [ISSN: 1944-3285] 2025; 20:226-235 

 

232 

 

Table 1. Expression and motion recognition accuracy. 
 

Modal (computing, linguistics) Training set accuracy Validation set accuracy Test set accuracy 

Facial expression 90.5% 88.3% 87.5% 

Body movement 85.2% 83.4% 82.1% 

Audio Mood 89.6% 87.9% 86.5% 

Multimodal fusion 94.3% 92.7% 91.8% 

 
 
Table 2. Analysis of changes in psychological integration - time series. 
 

Point in time 
(math.) 

Mean depression 
score 

Amount of change in facial 
expression 

Amount of change in body 
movement 

Week 1 18.5 0.2 0.1 

Week 2 17.2 0.1 0.05 

Week 3 15.8 0.05 0.03 

Week 4 14.5 0.02 0.01 

 
 
which might be due to the overfitting of the 
model on the training set or differences in the 
data distribution of the test set from the training 
set. 
 
Time-series analysis of changes 
The psychological integration, the trends in the 
mean depression scores, the amount of change 
in facial expressions, and the amount of change 
in body movements of the participants over time 
were investigated. The results showed that 
depression scores gradually decreased with the 
increase of time, indicating an improvement in 
the psychological state of the subjects, while the 
number of changes in facial expressions and body 
movements decreased, which might be related 
to the stabilization of the psychological state 
(Table 2). These results implied the effectiveness 
of psychological intervention or treatment.  
 
Correlation analysis of mental states and 
behavioral patterns 
The correlation analysis between psychological 
states and behavioral patterns showed that, by 
calculating the correlation coefficients and P 
values between depression scores and different 

behavioral patterns, there was a significant 
positive correlation between negative facial 
expressions, reduced body movements, low 
audio intonation and depression scores (Table 3), 
which meant that, when individuals exhibited 
these behavioral patterns, they might be at a 
higher risk for depression. These findings helped 
to better understand the relationship between 
psychological states and behaviors and provided 
behavioral indicators for psychological 
assessment. 
 
Case study results 
The risk scores for early depression identified by 
the MAFN model and their contribution of each 
modality in 10 patients were shown in Table 4. 
Based on the assessment results of the MAFN 
model, five patients (P001, P003, P005, P008, 
P009) demonstrated higher overall risk scores 
than the others, suggesting that they might be in 
an early stage of depression. The MAFN model 
demonstrated strong analytical power in 
handling multimodal data and was effective in 
identifying early signs of depression. Based on 
this finding, physicians should consider further 
psychological  assessment  of  these  patients  to 
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Table 3. Correlation analysis of mental states and behavioral patterns. 
 

Behavioral model Depression score correlation coefficient P value 

Negative facial expressions 0.78 < 0.001 

Decreased body movements 0.65 < 0.001 

Audio tone is low 0.72 < 0.001 

 
 
Table 4. Case study results. 
 

Patient 
ID 

Gender Age 
Facial expression 

contribution 
Body Movement 

Contribution 
Intonation 

contribution 
Overall risk 

score 

P001 F 28 40% 30% 30% 0.5 

P002 M 35 35% 25% 40% 0.45 

P003 F 32 50% 20% 30% 0.6 

P004 M 42 30% 40% 30% 0.4 

P005 F 30 45% 25% 30% 0.55 

P006 M 40 30% 35% 35% 0.4 

P007 F 27 40% 30% 30% 0.45 

P008 M 38 45% 25% 30% 0.5 

P009 F 33 50% 20% 30% 0.6 

P010 M 45 30% 40% 30% 0.45 

 
 
start intervention and treatment as early as 
possible. In addition, the wide application of the 
MAFN model would help to promote the 
development of precision medicine in mental 
health and improve the early identification rate 
of depression, thereby improving the overall 
treatment outcome and life quality of patients. 
 
Comparison of different models 
The performances of proposed MAFN model and 
other different models on the multimodal 
recognition task were compared and 
demonstrated that MAFN model outperformed 
the other models in terms of accuracy, precision, 
recall, and F1 score, showing its superiority in 
handling multimodal data (Figure 2). In contrast, 
unimodal models of CNN and LSTM performed 
poorly, which might be due to their inability to 
efficiently  integrate  information  from  different 

modalities. 
 
 

Discussion 
 
This study revealed the remarkable potential of 
multimodal attention fusion networks (MAFN) in 
recognizing and predicting mood changes in 
depressed patients. By comparing the 
recognition accuracies of different modalities, 
the consistently superior performance of the 
multimodal fusion model was observed across all 
datasets, which demonstrated the importance of 
integrating multiple sources of information such 
as facial expressions, body movements, and 
audio emotions. The results of this study 
suggested that the joint use of multimodal 
information significantly improved the accuracy 
of  emotion  recognition,  and  MAFN  model  was  
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Figure 2. Comparison of MAFN model performance with other models. 

 
 
equipped to handle complex scenarios and 
improve diagnostic accuracy. This research 
confirmed that MAFN model could assist in the 
diagnosis of early depression by analyzing 
multimodal data to improve the accuracy and 
timeliness of identification. Time-series analysis 
demonstrated a clear trend in the changes of 
depression scores and related behavioral 
patterns with psychological interventions, 
indicating that MAFN model was able to 
sensitively capture small changes in patients' 
psychological states. In addition, correlation 
analysis found a significant association between 
behavioral patterns and depression scores, 
further confirming the value of nonverbal 
behavior in the early identification of depression. 
This study delved into the application of 
multimodal deep learning in the early diagnosis 
of depression, proposing an innovative 
multimodal attention fusion network (MAFN) 
model. By integrating facial expression, body 
language, and voice data, the MAFN model 
demonstrated superior ability to recognize and 
predict mood changes in depressed patients, 
especially in processing complex and diverse 
data. The results showed that MAFN significantly 
outperformed traditional unimodal models on 
multimodal datasets. Due to its unique multi-

head self-attention mechanism and gated fusion 
unit, the model was enabled to intelligently 
distribute and integrate information from 
different modalities. This research analyzed a 
large amount of public data and conducted 
model training and validation on a high-
performance computing cluster to ensure the 
scientific validity of the experiments and the 
reliability of the results. In addition, through case 
studies, the power of MAFN model to identify 
early signs of depression in real-world scenarios 
were demonstrated, which provided a powerful 
tool to the physicians with a view to achieving 
earlier intervention and treatment. 
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