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Recent studies have encountered a significant challenge in understanding landscape images using artificial 
approaches. To address the issues of decreased segmentation accuracy and insufficient detail of fog areas in foggy 
scenes, a fusion network integrating de-fogging, hyper-division, and segmentation was proposed. The All-in-One 
Network (AOT-Net) for Dehazing algorithm that took an atmospheric scattering model was first utilized to 
effectively eliminate noise and fog from the image. Subsequently, Real Enhanced Super-Resolution Generative 
Adversarial Networks (Real-ESRGAN) super-resolution technology was introduced to enhance image quality post-
fog removal by filling in missing pixels, restoring edge details, and addressing issues such as excessive contrast 
and dark tones. The results indicated that this improved approach achieved outstanding performance on the 
Uavid datasets with added fog noise, showing a 4.4% increase in Mean Intersection Over Union (mIoU) compared 
to the original U-shaped Network Transformer (UNetFormer) model. This method significantly improved 
segmentation accuracy in foggy or rainy conditions and demonstrated its potential for large-scale data processing 
in smart city development and related landscape applications. 
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Introduction 
 
Urban landscapes are shaped by streets, 
buildings, and vegetation, which significantly 
affect the health, lifestyles, and well-being of 
residents. Accurate quantification of these 
features is vital for analyzing urban growth 
patterns [1]. To achieve such precise 
quantification, semantic segmentation has 
become an essential technique as it allows for the 
automatic identification and classification of 
urban elements at the pixel level. This approach 
enables detailed analysis of urban environments, 

providing valuable insights into the distribution 
and structure of various features within a city. In 
this context, Unmanned Aerial Vehicles (UAVs) 
have become an invaluable tool for urban 
landscape analysis [2]. UAVs enable the efficient 
collection of high-resolution aerial imagery over 
large areas, providing a flexible and cost-effective 
means of obtaining detailed data for semantic 
segmentation tasks. Their ability to capture real-
time, high-quality images from various angles 
greatly enhances the accuracy of urban feature 
extraction, making them ideal for large-scale 
environmental monitoring and urban planning. 
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However, adverse weather conditions such as fog 
can severely diminish image clarity, reduce 
visibility, and obscure critical details, which 
presents significant challenges for semantic 
segmentation, affecting the quality of the 
captured data and complicating further 
processing tasks [3, 4]. 
 
Traditional image segmentation methods such as 
thresholding, region growing, and edge detection 
struggle with the complexity of urban 
environments, where features are variable and 
often overlap. These methods are further 
hindered by challenges like varying illumination 
and shadows, making precise segmentation 
difficult. Consequently, deep learning-based 
models have become the go-to solution for 
semantic segmentation. Unlike traditional 
approaches, deep convolutional neural networks 
(CNNs) can learn complex features from raw 
data, enabling better capture of urban scene 
details. Early deep convolution-based models 
such as Fully Convolutional Networks (FCN) 
marked a significant improvement in 
segmentation accuracy by enabling pixel-level 
classification [5]. Subsequent advancements 
introduced more sophisticated architecture to 
address the limitations of early models. In 2015, 
Olaf Ronneberger introduced the UNet model, 
featuring a symmetric encoder-decoder 
structure that allowed for the restoration of fine 
details in the image, improving segmentation 
precision [6]. The Segmentation Network 
(SegNet) model optimized the pooling process by 
preserving information in the encoder's pooling 
layers and refining the decoder process to 
recover spatial details [7]. The DeeplabV3+ 
model incorporated depthwise separable 
convolutions and an Atrous Spatial Pyramid 
Pooling (ASPP) module, which enhanced the 
model's ability to segment multi-scale objects [8]. 
However, despite significant advancements in 
deep learning-based segmentation models, 
accurate semantic segmentation in foggy 
conditions remains a challenge as fog severely 
impairs image quality. Image de-fogging 
techniques are therefore critical for overcoming 
these challenges and can be categorized into 

three primary methods including physical 
models, non-physical models, and deep learning-
based models. Physical models typically use 
atmospheric scattering theory to replicate the 
scattering and absorption of light caused by fog, 
thereby restoring clear images. A widely used 
defogging algorithm based on this theory is the 
dark channel prior model, which has proven 
effective due to its high stability and efficiency in 
handling fog-related distortion [9]. Non-physical 
models, on the other hand, do not rely on the 
physical imaging process but instead apply image 
processing techniques to enhance the visual 
quality by adjusting the intensity distribution of 
the image. One such method is histogram 
equalization, which enhances the contrast by 
modifying the distribution of gray levels in the 
image [10]. Deep learning-based de-fogging 
methods have also made significant strides. The 
Dehaze Networks (DehazeNet) developed by Cai 
et al. is a deep learning-based system that uses 
convolutional neural networks (CNNs) to assess 
atmospheric haze factors and enhance image 
quality [11]. The key concept behind DehazeNet 
is its ability to map foggy images directly to their 
clear counterparts using CNNs. This approach has 
been improved by subsequent models like NIN-
DehazeNet and Light-DehazeNet, which have 
optimized the alignment and adapted the model 
to different application scenarios [12, 13]. 
 
Given the importance of both image de-fogging 
and semantic segmentation, achieving accurate 
urban streetscape segmentation in foggy 
conditions requires an integrated approach. 
Combining de-fogging, super-resolution 
techniques and deep learning-based semantic 
segmentation has shown promise in overcoming 
the challenges caused by fog. This integrated 
solution improves image resolution, restores fine 
details, and enhances contrast, all of which are 
crucial for boosting segmentation accuracy [14]. 
This research proposed a method that effectively 
combined de-fogging, super-resolution, and 
semantic segmentation networks to process UAV 
imagery in adverse weather, ultimately enabling 
accurate urban streetscape segmentation even 
under foggy conditions. The proposed method 
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not only addressed significant challenges in 
current segmentation tasks but also laid the 
groundwork for future applications in urban 
planning, environmental monitoring, and other 
areas requiring precise image analysis under 
complex weather conditions. 
 
 

Materials and methods 
 
Urban landscape segmentation based on super-
resolution image enhancement in fog 
environment 
When segmenting urban landscapes in foggy 
conditions, image quality often deteriorates, 
complicating the accurate extraction of relevant 
information. To solve the above problems, this 
study applied image dehazing techniques to 
reduce blurriness and contrast loss caused by fog 
and enhance clarity and visibility. However, 
details might be lost during dehazing, prompting 
the use of super-resolution enhancement 
techniques to recover these details and improve 
resolution, ensuring image quality meeting 
segmentation needs. The processed images 
underwent semantic segmentation using the 
UnetFormer network, accurately identifying key 
elements like buildings, roads, and vegetation, 
thereby providing essential semantic information 
to support urban management and landscape 
analysis. 
 
(1) Image defogging algorithm 
Under the influence of fog, urban streetscape 
images captured from a UAV perspective were 
prone to interference, leading to a decline in 
image quality that subsequently affected 
downstream analysis and processing tasks. In this 
context, the adoption of an efficient dehazing 
algorithm became particularly crucial. AOD-Net 
with its lightweight architecture and real-time 
processing capabilities had emerged as an ideal 
choice for dehazing aerial images captured by 
drones [15]. AOD-Net relied on an atmospheric 
model, indicating that image degradation was 
mainly due to atmospheric scattering effects. 
Traditional algorithms estimated the 
transmittance and atmospheric light separately, 

which not only incurred high computational costs 
but also introduced errors. In contrast, AOD-Net 
merged these two elements into a single 
transition matrix, simplifying its structure, 
reducing computational complexity, enhancing 
efficiency, and minimizing errors. Its network 
architecture employed a multi-scale feature 
fusion network, effectively capturing information 
across various scales to accurately estimate 
transmittance. Ultimately, AOD-Net utilized the 
simplified model to generate dehazed images 
through the transition matrix. This lightweight 
design made it highly suitable for real-time 
dehazing tasks in UAV applications. The AOD-Net 
model consisted of the following five steps. Step 
1 was the atmospheric scattering model that 
represented a simplified relationship between a 
clear image and its foggy version expressed as 
follows. 
 

( ) ( ) ( ) (1 ( ))I x J x t x A t x= + −                              (1) 

 
where t(x) was the transmission map. A(*) 
represented the atmospheric light value. To 
recover a clear image, accurate estimation of 
both values was essential. In AOD-Net, the two 
unknowns in Equation (1) were combined into a 
single variable 𝐾  through mathematical 
transformations. The solution for 𝐾 was shown in 
equation (2), while the simplified atmospheric 
scattering model was presented in equation (3). 
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( ) 1 ( ) ( ) ( )J x K x I x K x− = −                                       (3) 

 
Step 2 was the multi-scale feature fusion network 
leveraged a multi-scale fusion strategy to extract 
fog features, enhancing its overall performance 
(Figure 1). The architecture comprised five 
convolution layers and three merging layers. 
These convolution layers used kernels of varying 
sizes to capture features at multiple scales, 
enabling the network to gather diverse image 
details. The merging layers integrated feature 
maps from these scales, enhancing feature 
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extraction and minimizing information loss 
during the convolution process [16]. Each 
convolution layer in the network employed only 
three kernels, creating a simple, shallow 
structure without complex branches. This 
streamlined design significantly reduced 
processing time, enabling the algorithm to 
achieve real-time performance. 
 
 

 
 
Figure 1. Network structure of AOD-Net. 

 
 
Step 3 was the generation of foggy dataset. AOD-
Net augmented the NYU2 indoor clear image 
dataset by applying various atmospheric light 
intensities and scattering coefficients, producing 
a synthetic foggy dataset with different fog 
density levels. Step 4 was the designing the loss 
function for network training by employing the 
mean squared error (MSE) loss as described 
below. 
 

2

MSE ( ( ))i iL J f x= −                                             (4) 

 
where xi  was the foggy image input to the 
network. Ji was the corresponding clear image of 
the synthetic fog data. f(xi)  was the dehazed 
image generated by the AOD-Net network. Step 
5 was that, after training, the AOD-Net network 
could get the weight file of each layer of the 
trained network, load the weight file, and read 
the fog image with AOD-Net to directly obtain the 
de-fog image. 
 
(2) Super resolution image enhancement 
Although the AOD-Net dehazing algorithm 
demonstrated exceptional efficiency, the 
resulting images often suffered from issues such 
as incomplete dehazing, excessive contrast, 
blurred edge details, and dark tones. These 

blurred images obscured building outlines and 
made road signs difficult to discern, negatively 
impacting subsequent segmentation tasks. The 
introduction of super-resolution techniques 
could significantly enhance image quality by not 
only supplementing missing pixels and restoring 
details but also improving contrast and color 
accuracy, which was particularly beneficial for 
extracting critical features like buildings, roads, 
and vegetation in urban street scene recognition. 
In this study, Real-ESRGAN technology was used 
for real-world scenarios [17]. The Real-ESRGAN 
framework built upon Generative Adversarial 
Networks (GANs) applied high-order degradation 
modeling to replicate actual degradation effects. 
This technique accounted for various image 
acquisition conditions like noise, blurring, and 
color distortion, enhancing the realism and 
accuracy of the restoration results. The classical 
degradation model involved convolving the 
ground truth image 𝑦 with a blur kernel 𝑘, then 
downsampling, adding noise, and applying JPEG 
compression as described in equation (5) [18]. 
The high-order degradation model reproduced 
the degradation present in real images by 
repeatedly using the classical degradation 
procedure with 𝑛 representing the number of 
iterations as shown in equation (6). Additionally, 
Real-ESRGAN utilized a sinc filter to minimize 
ringing and overshoot artifacts as illustrated in 
equation (7), where 𝑖 and 𝑗 denoted the filter 
coordinates, and 𝜔𝑐 was the cutoff frequency. By 
implementing high-order degradation and sinc 
filtering, Real-ESRGAN effectively mimicked real-
world image degradation, ultimately improving 
image quality. 
 

JPEG( ) [( ) ]rx D y y k n= =  +#                          (5) 
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The generator structure of the Real-ESRGAN 
model consisted of convolutional layers, 16 
sequentially      connected      Residual-in-Residual  
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Figure 2. The generator structure of the Real-ESRGAN model. 

 
 
Dense Blocks (RRDBs), up-sampling layers, and a 
convolutional output layer (Figure 2). In contrast 
to the ESRGAN model, the discriminator 
architecture replaced the Visual Geometry Group 
Network (VGG) with a U-Net model that 
incorporated Spectral Normalization (SN) (Figure 
3). This design allowed the discriminator to 
assess the generated images from a pixel-level 
perspective, enabling it to maintain the overall 
realism of the images while also focusing on 
intricate details.  
 
 

 
 
Figure 3. Structure of Real-ESRGAN model discriminator (U-Net 
model with SN). 

 
 
(3) Semantic segmentation in urban streetscape 
Semantic segmentation of urban streetscapes is 
widely used in land cover measurement, urban 
development monitoring, environmental 
protection, and economic planning. The Fully 
Convolutional Network (FCN) is an end-to-end 
architecture for semantic segmentation, 
establishing the groundwork for using 

Convolutional Neural Networks (CNNs) in this 
domain. Despite its innovation, FCN's decoder 
structure is relatively simple, resulting in low-
resolution outputs that affect segmentation 
precision. To overcome this limitation, UNet 
implemented a balanced encoder-decoder 
framework, where features were extracted via 
downsampling and resolution is restored through 
upsampling [19]. Although CNN-based encoder-
decoder techniques had advanced, they 
struggled in complex urban environments 
because they primarily captured local details and 
fail to account for global context. Transformers, 
on the other hand, transformed 2D image tasks 
into 1D sequences, allowing them to capture 
global information more effectively and achieve 
better results in core vision tasks [20]. 
UNetFormer was an innovative network 
architecture that seamlessly integrated the 
encoder-decoder framework based on CNNs with 
the transformer’s exceptional global information 
modeling capabilities (Figure 4). In these 
environments, the images might suffer from 
incomplete defogging or blurring, leading to a 
decline in segmentation accuracy with traditional 
methods. UNetFormer effectively addressed 
these challenges by precisely capturing local 
details and integrating global information. By 
enhancing the recognition and fidelity of key 
details such as building outlines and road 
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boundaries, this network achieved high accuracy 
and clarity in image segmentation under complex 
conditions, significantly advancing the 
capabilities of remote sensing image analysis. 
 
 

 
 
Figure 4. UnetFormer flowchart of the algorithm. 

 
 
The CNN network's encoder used ResNet18 as its 
base and was divided into four stages. Down 
sampling was taken in each stage by a factor of 2. 
The feature maps of each stage were linked to 
those of the decoder via skip connections using 
1×1 convolutions with a channel size of 64. This 
process involved calculating a weighted sum to 
combine the semantic features from the Residual 
Block (ResBlock) with those from the decoder's 
Global-Local Transformer Blocks (GLTB) [21]. The 
weighting was adjusted based on how much each 
feature contributed to segmentation accuracy 
with the specific expression as follows. 
 

(1 )FF RF GLF =  + −                                     (8) 

 
where 𝐹𝐹 was the fused feature created by 
combining features from multiple sources. 𝑅𝐹 
was the features extracted by the ResBlock. 𝐺𝐿𝐹 
was the features generated by the GLTB. The 
decoder section consisted of three GLTBs and a 
Feature Refinement Head (FRH), forming a 
streamlined transformer-based decoder. The 
Global-Local Transformer Block (GLTB) employed 
dual parallel branches to extract both global and 

local information (Figure 5). The local branch 
included two convolutional layers with kernel 
sizes of 1 and 3 followed by batch normalization 
to stabilize the training process. The global 
branch, which was more intricate, implemented 
a self-attention mechanism to capture global 
image features, which transformed the 2D 
feature map into Query, Key, and Value vectors. 
The Query vector targeted specific location 
details, while the Key stored reference 
information, and the Value vector held the 
corresponding content. By computing the 
similarity between the Query and Key vectors, 
the network identified relevant areas and 
adjusted the Value vector to create a global 
context. To improve spatial understanding, the 
model integrated relative positional bias and a 
cross-shaped window context interaction, 
capturing long-range features horizontally and 
vertically, enhancing global information 
exchange. Softmax normalization was then 
applied to generate the global context 
representation, enabling effective processing of 
long-distance pixel relationships, particularly in 
complex urban street scenes. 
 
 

 
 
Figure 5. Diagram of global-local attention. 

 
 
Experimental dataset 
The UAVid dataset was employed in this study 
[22], which was provided by a collaboration 
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among three universities including the University 
of Twente (Twente, the Netherlands), Wuhan 
University (Wuhan, Hubei, China), and the Ohio 
State University (Columbus, Ohio, USA). The 
dataset was specifically designed for semantic 
segmentation tasks in urban scenes captured by 
UAVs, which consisted of over 300 high-
resolution remote sensing images of urban street 
scenes with the pixels of 4,096 × 2,160, capturing 
various urban environment features such as 
buildings, roads, vehicles, pedestrians, and 
vegetation in different settings, including 
residential, commercial, industrial areas, and 
parks. The dataset was annotated with eight 
primary semantic categories with each 
associated with a distinct color label to clearly 
differentiate the various objects in the UAV 
images, which included black for clutter, red for 
building, purple for road, magenta for static car, 
green for tree, olive for vegetation, brown for 
human, and blue for moving car. The color labels 
had been carefully processed to ensure high label 
quality. To create foggy scenarios, synthetic fog 
noise was applied to the UAVid dataset with 
scene depth serving as the main parameter. The 
process merged clear images and their 
corresponding depth maps, generating realistic 
urban scenes shrouded in fog. This method 
accurately simulated atmospheric effects by 
considering the distance between the camera 
and the scene elements. In fog removal research, 
optical models were commonly used to simulate 
the effect of fog on visual scenes. This work 
simulated foggy circumstances using the 
atmospheric scattering model described in 
equation (1). The exact calculation procedure 
was as follows. 
 

( ) exp( ( ))t x l x= −                                               (9) 

 
where 𝑡(𝑥) was the transmission quantity, which 
determined the scene brightness that reached 
the camera. In a homogeneous medium, the 
transmission quantity depended on the distance 
𝑙(𝑥) from the scene elements to the camera. β 
was the attenuation coefficient, which could 
effectively control the concentration of fog. The 

larger the value, the heavier the fog generated. 
Meteorological Optical Range (MOR), often 
referred to as visibility, was a standard measure 
used to assess fog density. Typically, the camera-
to-scene distance exceeded 0.05 meters. The 
visibility at this point was defined as MOR = 
2.996/β as shown in equation (10). According to 
meteorological guidelines, visibility during foggy 
conditions was classified as less than 1 km, so the 
value range of the attenuation coefficient was 
determined as below. 
 

3 12.996 10 m − −                                             (10) 

 
The original images could be synthesized into 
three categories as light fog, moderate fog, and 
heavy fog with corresponding β values of 0.005, 
0.015, and 0.030, respectively. Following this 
synthesis process, the dataset had expanded 
from the initial 300 images to a total of 900 
images. 
 
Experiment settings 
The experimental setup used Ubuntu 22.04 and 
PyTorch with an NVIDIA RTX 4060 GPU and 16 GB 
RAM for training. NVIDIA CUDA 11.8 and cuDNN 
v7.6.1 were used for GPU acceleration. Python 
3.8 was the software environment. During 
training, the Adam optimizer was utilized, 
specifically with a learning rate of 6 × 10⁻⁴, a 
weight decay of 2 × 10⁻⁴, a batch size of 4, and a 
total of 40 epochs implemented. Evaluation 
metric used Intersection over Union (IOU), a 
commonly utilized metric in semantic 
segmentation tasks, measuring the overlap 
between anticipated and ground truth masks. For 
each class, it was computed as the ratio of the 
intersection area to the union area of the 
predicted and target regions, defined as follows. 
 

( )
IOU

( )

I X

U X
=                                                            (11) 

 
where I(X)  was the intersection set. U(X)  was 
the union set and could be approximated as 
follows. 
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C.                                     D. 

  

E. 

 

 
Figure 6. The comparison between mild (A), moderate (B), and heavy fog (C-E) effects. 

 
 
Table 1. Comparison of segmentation accuracy between UNetFormer and proposed method. 
 

Approach Building Tree Clutter Road Plants S-Car M-Car People mIoU 

UNetFormer 58.2 77.5 71.6 74.2 57.4 68.5 50.2 22.8 60.05 

Proposed method 64.8 82.5 76.3 77.8 62.4 70.4 53.7 27.8 64.46 

 
 

( ) v v
v V

I X X Y


=                                                (12) 

 
( ) ( )v v v v

v V

U X X Y X Y


=  + −                            (13) 

 
When more than one class existed, the mean 
intersection over Union average IOU (mIOU) for 
all classes was calculated. 
 
 

Results and discussion 
 

This study evaluated the segmentation results of 
the original UnetFormer model and the proposed 
integrated model under mild, moderated, and 
dense fog environments (Figure 6). Each set of 
images included the original model, UnetFormer, 
and proposed method. Due to the influence of 
fog on image color and texture, the original 
UnetFormer performed poorly, exhibiting 
unclear boundaries and inaccurate class 
differentiation. In contrast, the proposed 
dehazing and super-resolution techniques 
significantly reduced the fog effects, resulting in 

more accurate scene classification and boundary 
segmentation. 
 
The results demonstrated that the proposed 
method outperformed UNetFormer in 
segmentation accuracy across various categories. 
Under mild fog, both methods achieved high 
precision with minimal differences. However, 
under heavy fog, UNetFormer’s accuracy 
declined, especially for small targets like vehicles 
and trees. In contrast, the proposed approach 
effectively reduced fog interference, achieving 
higher IoU values across categories such as 
buildings, trees, roads, vegetation, and vehicles 
(Table 1). Significant improvements were 
observed in trees and buildings, highlighting the 
proposed method's advantage in detail and 
boundary accuracy. In terms of mean IoU (mIoU), 
UNetFormer scored 60.05%, while proposed 
method reached 64.46%, marking a 4.41% 
improvement, demonstrating its effectiveness in 
foggy conditions. To further evaluate the efficacy 
of the proposed strategy, the mean 
segmentation accuracy of three additional 
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models, Attentive bilateral contextual network 
(ABCNet) [23], Multi-Scale Discriminative (MSD) 
[24], and Bilateral Segmentation Network 
(BiSeNet) [25], were compared on the Foggy 
UAVid dataset. The MSD model achieved an 
average mIoU of 53.2%, which was mainly 
attributed to its limitations in multi-scale feature 
extraction and global context integration. While 
it employed dilated convolutions to mitigate 
edge contrast, the model struggled to fully 
capture long-range dependencies and complex 
contextual information in foggy conditions. 
ABCNet performed slightly better with an mIoU 
of 54.3%, indicating some improvement in its 
adaptability to foggy images. However, this 
enhancement remained limited as the model still 
failed to effectively capture global and long-
range dependencies in challenging weather 
conditions. Moreover, ABCNet lacked specific 
processing or enhancement methods for 
handling blurred regions, further hindering its 
performance. The BiSeNet model with an mIoU 
of only 52.1% performed the worst among all the 
models. Despite being effective for fast 
segmentation tasks, its relatively simple network 
architecture proved insufficient for extracting 
deep semantic features in complex environments 
like foggy urban scenes, resulting in lower 
segmentation accuracy. In contrast, the 
UNetFormer model achieved an mIoU of 60.05%, 
significantly outperforming the other models. 
This superior performance could be attributed to 
the incorporation of transformer modules, which 
enhanced its ability to capture long-range 
dependencies and global context, making it more 
effective for semantic segmentation under 
challenging weather conditions. The proposed 
algorithm achieved an mIoU of 64.46%, clearly 
demonstrating its effectiveness in enhancing 
image segmentation performance. By employing 
dehazing techniques, it significantly improved 
image clarity, contrast, and detail restoration. 
Additionally, the integration of super-resolution 
technology addressed potential detail loss during 
dehazing, refining image resolution, and 
enriching textures, which resulted in smoother 
edges and more intricate structures, leading to 
better segmentation outcomes.  

The algorithm was built on a semantic 
segmentation network that combined dehazing, 
super-resolution enhancement, and the 
UNetFormer model, which together addressed 
the challenges of reduced segmentation accuracy 
and insufficient detail in dense fog areas of urban 
street scenes. The AOT-Net removed fog noise 
from the image followed by Real-ESRGAN super-
resolution enhancement that corrected 
excessive contrast, blurred edges, and dark 
tones, restoring details. Finally, the UNetFormer 
network segmented the processed images, 
achieving precise results. This method showed a 
4.4% improvement in mIoU accuracy on the 
foggy UAVid dataset compared to the original 
UNetFormer network. While the proposed 
method performed well on the foggy UAVid 
dataset, its effectiveness in real foggy urban 
scenes had not been fully tested due to the 
limited availability of real-world foggy scene 
datasets. As large-scale training on such datasets 
remained challenging, future work would focus 
on collecting labeled images from actual foggy 
urban environments and incorporating them into 
the training process to enhance the network's 
robustness. Additionally, more lightweight 
network architectures were planned to be 
explored to develop an efficient segmentation 
network tailored for foggy scenarios, ensuring its 
practicality in real-world applications. 
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