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Flue-cured tobacco is the most important raw material for cigarette production, and efficient and accurate 
intelligent grading of flue-cured tobacco leaves is of great significance to the acquisition and correct use of 
tobacco. Currently, there are few studies on the classification of flue-cured tobacco by using both front and back 
images of tobacco leaves, while the back image of flue-cured tobacco leaves has enriched information. To harness 
the back information of these leaves and enhance grading accuracy, a revolution ResNet network model, Evo-
ResNet, was proposed in this study based on front and back images of flue-cured tobacco leaves. Evo-ResNet had 
six channel with added Squeeze-and-Excitation (SE) attention mechanism. Six grades pictures of Cuibi 1 and 
Yunyan 87 tobacco species were collected using mobile phone, respectively. Evo-ResNet was compared with 
three-channel models of ResNet, GoogLeNet, VGGNet, and AlexNet with only front images of flue-cured tobacco 
leaves and both front and back images of flue-cured tobacco leaves. The results showed that the loss of train set 
and the accuracy of validation set had better results while the front and back pictures of flue-cured tobacco leaves 
were used meantime. For the test set, the accuracy, recall, precision, and F1-score of Evo-ResNet were better than 
that of other three-channel network models, expect for GoogleNet. The accuracy, recall, precision, and F1-score 
value of Cuibi 1 were 95.83%, 95.83%, 96.16%, and 95.78%, respectively, while those of Yunyan 87 were 99.07%, 
99.07%, 99.10% and 99.08%, respectively. There was better generalization ability for Evo-ResNet. Because of the 
convenience for obtaining image of flue-cured tobacco by mobile phone, the proposed Evo-ResNet network model 
had better applicability in practice, which provided a new idea for the application of intelligent classification of 
flue-cured tobacco leaves in purchasing practice of flue-cured tobacco. 
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Introduction 
 
The tobacco industry holds significant 
prominence in China. Flue-cured tobacco is a 
critical raw material in cigarette production, 
where its quality significantly influences its 
pricing. Therefore, rational grading of flue-cured 
tobacco is crucial for maximizing economic 

benefits. Tobacco grading is based on the quality 
of flue-cured tobacco. However, in most tobacco 
production areas, manual grading methods are 
still predominant presently. Tobacco grading 
workers assess flue-cured tobacco through 
visual, tactile, and olfactory observations. 
Despite standardized rigorous professional 
training, individual differences persist in grading 
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efficiency and accuracy among workers [1, 2]. 
During the grading process, workers need to be 
careful with each piece of flue-cured tobacco. 
Prolonged grading sessions can induce visual 
fatigue among workers, thereby impacting both 
the efficiency and accuracy of the grading 
process. This situation may lead to disputes 
between tobacco farmers and purchasing 
stations regarding the grading outcomes. In 
response to this challenge, the widespread 
adoption of computer technology has emerged 
as a common solution to enhance tobacco 
grading practices. 
 
It is highly feasible to apply image recognition 
techniques such as machine vision and 
convolutional neural networks, commonly used 
in image classification, to grading flue-cured 
tobacco. Intelligent classification of tobacco 
dates back to 1997 when Korean scholars first 
proposed the use of machine vision methods for 
this purpose [3]. Presently, intelligent grading 
encompasses four main approaches including 
spectral technology-based classification [4, 5], 
fuzzy mathematics-based classification [6, 7], 
machine vision methods [8, 9], and classification 
utilizing convolutional neural networks. In recent 
years, the organization of the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) has 
significantly accelerated the development of 
convolutional neural networks (CNNs) such as 
visual geometry group (VGGNet) and residual 
neural network (ResNet). Researchers have 
meticulously refined these foundational CNN 
architectures and achieved impressive results 
when applied to tobacco classification. Liang et 
al. introduced a tobacco grading approach 
leveraging machine vision, which employed CNNs 
including ResNet, AlexNet, VGGNet as 
foundational learners and a support vector 
machines (SVM) classifier as the meta-learner 
[10]. The stacking model fusion strategy 
significantly enhanced accuracy over individual 
models as evidenced by comparative analysis. 
Wang et al. achieved 95.23% accuracy in tobacco 
leaf classification via InceptionV3 with transfer 
learning for training and integration of the 
extreme point jumping algorithm [11]. Lu et al. 

proposed a deep learning approach for tobacco 
leaf classification, which incorporated multi-scale 
feature fusion [12]. Specifically, the method 
utilized ResNet50 for feature extraction and 
incorporated a compression excitation module to 
assign different feature weights to different 
channels. Subsequently, these features were 
fused with a feature pyramid to realize multi-
scale feature representation of tobacco leaves, 
resulting in 5.21% higher accuracy than classical 
CNNs. Other researchers compared the 
performance of four classical CNNs pretrained on 
Imagenet for tobacco grading and found that 
VGG-16 performed effectively on Anhui Wannan 
Tobacco data. Subsequently, they evaluated the 
impact of five different optimizers and concluded 
that the Adagrad optimizer achieved the highest 
overall performance with an accuracy rate of 96% 
[13]. Additionally, building upon ResNext50, 
researchers introduced the CA attention 
mechanism [14], which enhanced the channel 
attention to features and thereby improved the 
grading accuracy of the enhanced model by 9.4% 
higher than the base ResNet50 network [15].  
 
Currently, most scholars and grading experts only 
rely on the front images of tobacco leaves, 
employing visual, tactile, and olfactory 
assessments for flue-cured tobacco classification, 
while the utilization of back side data remains 
restricted [12]. Nevertheless, the back images of 
tobacco leaves, which are richer in texture and 
structural complexity than the front, could 
enhance grading accuracy if fully utilized. 
Therefore, based on the ResNet convolutional 
neural network, this research proposed an 
improved algorithm that aligned and integrated 
both front and back images data of tobacco 
leaves into a six-channel tensor, which adjusted 
the input channel of the initial convolutional 
layer in ResNet network model to six and added 
the squeeze-and-excitation (SE) attention 
mechanism, for intelligent classification of flue-
cured tobacco. This study had significant 
implications for both the current tobacco 
industry and the research community, which 
achieved a more convenient, efficient, and 
accurate  intelligent  classification  in  the tobacco 
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Table1. Grade quality regulations for flue-cured tobacco. 
 

Groups Code Maturity Leaf structure Body Oil Color intensity Length (cm) Waste (％) 

X F X2F ripe open less thin less oily moderate 35 25 

C F 
C2F ripe open medium oily strong 40 15 
C3F ripe open medium oily moderate 35 25 
C4F ripe open less thin less oily moderate 35 30 

B F 
B2F ripe firm fleshy oily strong 40 20 
B3F ripe close fleshy oily moderate 35 30 

Notes: B, C, and X represented upper, middle, and lower part of tobacco leaves, respectively. F represented orange tobacco. 

 
 
industry by using mobile phones of any model 
and pixel to get the images. Further, this study 
extended the application of machine vision and 
deep learning in agriculture, particularly in 
tobacco classification. The utilization of back 
images of flue-cured tobacco leaves offered new 
ideas for advancements in tobacco leaf 
classification intelligence and enriched the 
current theoretical framework of tobacco 
classification, which not only served as a 
reference for the intelligent classification of 
other crops but also facilitated a more efficient 
production model and scientific resource 
allocation, thereby positively contributing to the 
modernization of the tobacco industry. 
 
 

Materials and methods 
 
Resource of tobacco leaves  
Six grades of cured tobacco including X2F, C2F, 
C3F, C4F, B2F, B3F sourced from Fujian province 
purchasing stations (Fujian, China) were employe 
in this study. According to the National Standard 
of the People's Republic of China: Flue-cured 
Tobacco, GB2635-92 [16], the tobacco grades 
were designated by the part of the plant where 
the leaves were collected with the upper part as 
B, middle as C, lower as X, while the quality grade 
was expressed by Arabic numerals with lower 
values indicating higher quality, and color with F 
for orange. The determination of the grade of 
tobacco included the maturity of flue-cured 
tobacco, leaf structure, body, oil, color intensity, 
length reaching a certain level of regulation when 
the waste does not exceed the permissible 
degree of a certain level. The specific criteria 

were shown in Table 1. Two flue-cured tobacco 
varieties, Cuibi 1 and Yunyan 87, were analyzed 
in this study with C2F, C3F, C4F grades from Cuibi 
1 procured from purchasing stations in Jiangle 
County and the same grades of Yunyan 87 from 
purchasing stations in Taining County, both 
locate in Sanming, Fujian, China. Furthermore, 
X2F, B3F, and B2F grades of Cuibi 1 and Yunyan 
87 were purchased from the stations in Yong'an, 
Fujian, China. Before sampling, the tobacco 
leaves were authenticated by grading experts 
from the Fujian Tobacco Company Sanming 
Branch (Sanming, Fujian, China). 
 
Collection of tobacco leaf images 
To reduce the model's dependency on shooting 
conditions and improve generalization, diverse 
devices were used to capture flue-cured tobacco 
leaf data under different lighting conditions at 
different times. All original images were acquired 
from the paper by Huang et al. and were 
collected in August and November 2023 [17]. In 
August, the images of tobacco leaves for C2F, 
C3F, C4F grades were captured under both 
indoor and outdoor natural lighting conditions at 
different times of the day (morning, afternoon, 
evening). In November, the images for X2F, B2F, 
B3F grades were taken under outdoor natural 
lighting conditions at the same times as that in 
August. The image capture devices included 
IQOO Neo 855 (IQOO, Dongguan, Guangdong, 
China), Huawei Nova 5I Pro (Huawei 
Technologies Co., Ltd., Shenzhen, Guangdong, 
China), Realme X50 Pro (Realme, Dongguan, 
Guangdong, China), and Vivo X60t Pro (Vivo, 
Dongguan, Guangdong, China). The different 
conditions    were    designed    to    enhance    the
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Table 2. The modeling pictures data set of flue-cured tobacco leaves for Cuibi 1 and Yunyan 87. 
 

Species Cuibi 1  Yunyan 87 

Data set 
Grades  Grades 

X2F C2F C3F C4F B2F B3F  X2F C2F C3F C4F B2F B3F 

Training set Front 288 288 288 288 288 288  432 432 432 432 432 432 
 Back 288 288 288 288 288 288  432 432 432 432 432 432 

Total 576 576 576 576 576 576  864 864 864 864 864 864 

Validation set Front 36 36 36 36 36 36  54 54 54 54 54 54 
 Back 36 36 36 36 36 36  54 54 54 54 54 54 

Total 72 72 72 72 72 72  108 108 108 108 108 108 

Test set Front 36 36 36 36 36 36  54 54 54 54 54 54 
 Back 36 36 36 36 36 36  54 54 54 54 54 54 

Total 72 72 72 72 72 72  108 108 108 108 108 108 

 
 
model's generalization capability [17]. 
 
Construction of the dataset 
After taking flue-cured tobacco pictures, 
preliminary data organization was important to 
effectively master the characteristics of the flue-
cured tobacco. It was necessary to ensure that 
the front and back sides of the flue-cured tobacco 
pictures were fully unfolded and the pictures 
with curled flue-cured tobacco leaves were 
deleted to ensure the accuracy and reliability of 
the data. It was also important to verify the one-
to-one correspondence between front and back 
images and to eliminate redundant data that 
were missed or duplicated during the shooting 
process to ensure data consistency. A total of 360 
front and 360 back images for each grade of Cuibi 
1 were selected, resulting in a total of 720 images 
per grade, which ended in a total of 4,320 images 
of Cuibi 1 from the organized data. For each 
grade of Yunyan 87, 540 front and 540 back 
images were selected with a total of 1,080 
images per grade and a total of 6,480 images for 
Yunyan 87. The selected image data were divided 
into training, validation, and test sets in an 8:1:1 
ratio with the detailed selected images dataset 
for grading purpose shown in Table 2. The image 
data in the training set underwent random 
rotation to enhance the model's ability to learn 
more diverse features and achieve a higher 
semantic representation level. The image 
resolution was standardized to 224 × 224 and 
converted to tensor format, enabling efficient 

GPU-based training. Tensor splicing combined 
front and back images data into six channels as 
required by the algorithm in this study before 
model input. Data normalization was 
subsequently applied. 
 
Evolution ResNet (Evo-ResNet) 
This study proposed an enhanced conventional 
ResNet network model named evolution ResNet 
(Evo-ResNet) with the algorithm's flowchart 
shown in Figure 1. 
 
(1) Modification of data folder structure 
Both front and back images of tobacco leaves 
were input into the model on a one-to-one 
correspondence, enabling model to learn more 
features. Therefore, the reading function dataset 
needed to be modified in the data input stage. 
For the selected dataset folder, the 
corresponding front and back image data were 
extracted, processed, and enhanced. The 
torch.cat function was then used to concatenate 
them by channel, combining two three-channel 
tensors into one six-channel tensor. This process 
was carried out by the modified data reading 
function, mydataset. 
 
(2) Improvement of the convolutional layer 
The convolutional layer was improved by 
merging RGB three-channel images of front and 
back sides of tobacco leaves into a six-channel 
image. This six-channel image was then 
processed by n six-channel convolutional kernels  
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Figure 1. Evolution ResNet (Evo-ResNet) algorithm process. 

 
 
to generate n feature maps, which were finally 
combined into an n-channel feature map output. 
To accommodate the six-channel convolutional 
layer, the final fully connected layer was adjusted 
and set its output channels to n. 
 
(3) SE attention mechanism 
Given the richer information content in the six-
channel input compared to the three-channel 
input, this research integrated the SE attention 
mechanism after each BasicBlock to help the 
better network's utilization of information. With 
the six-channel input containing the information 
of both front and back tobacco leaves images, SE 
attention mechanism enabled the network to 
effectively comprehend these data by 
autonomously learning crucial information and 
enhancing the feature representation of 
channels. As a result, the network de-
emphasized less relevant features, bolstering its 
generalization prowess. Additionally, to alleviate 
overfitting, the original ResNet architecture was 
refined by decreasing the number of BasicBlocks 
per layer to 2, optimizing parameter usage. The 
Evo-ResNet model utilized mydataset function to 
read the image data, and the six-channel tensor 
was input into modified convolutional layers. 
Furthermore, SE layers were added after each 
BasicBlock module, and the final fully connected 
layer was adjusted to output the corresponding 
number of categories. 
 
Model establishment and training 
The programming software used in this study 
included PyCharm (JetBrains, Prague, Czech 
Republic), Jupyter Notebook, an open-source 
tool primarily managed by the Jupyter 

community, and Origin 2024 (OriginLab 
Corporation, Northampton, MA, USA). The 
hardware configuration and specifications 
included Windows 10 System, 64 GB RAM,  Intel 

CoreTM i7-10700K CPU @ 3.80GHz, NVIDIA 
GeForce RTX 3080 with 10 GB memory GPU. This 
study leveraged the Pytorch framework to 
establish a custom data loader, mydataset, and 
configured a six-channel ResNet model. The 
cross-entropy loss function and Adam optimizer 
with a learning rate α of 0.00001 were used in 
this study, while the other parameters were kept 
at their default values. The model underwent 100 
epochs of training and validation cycles followed 
by final testing. 
 
Model evaluation 
The loss-value was determined using cross-
entropy, which was a concept in information 
entropy theory that calculated the difference 
between the predictions and the true labels for 
all categories as below. 
 


=

−=−
C

1i

ii pyvalueLoss )log(                          (1) 

 
where C was the total number of categories in 

the sample. iy  was the true labels of samples 

with the label for the true category as 1 and the 

rest as 0. ip  was the model's predicted 

probability that a sample belonged to category i. 
The accuracy indicated the ratio of accurately 
classified instances to the total, serving as the 
most prevalent evaluation criterion for 
classification tasks with the calculation 
formulated as follows. 
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TP TN
Accuracy

TP TN FP FN

+
=

+ + +
                     (2) 

 
where T was a correct prediction (True). F was an 
incorrect prediction (False). P was the predicted 
results that were positive (Positive). N was the 
predicted results that were negative (Negative). 
The recall was the probability of a true positive 
sample that was correctly predicted as positive. 
 

TP
Recall

TP FN
=

+
                                              (3) 

 
The precision was the probability of true positive 
samples among samples predicted as positive. 
 

TP
Pr ecision

TP FP
=

+
                                     (4) 

 
F1-score was the harmonic mean of recall and 
precision, which made a balancing judgment 
between model accuracy and completeness and 
was shown below. 
 

Pr ecision Recall
F1-score 2

Pr ecision Recall


=

+
                    (4) 

 
Recall, precision, and F1-score were evaluation 
metrics proposed for binary classification, and 
each held unique values in such problems, while 
in multiclassification scenarios, each 
classification corresponded to its value. These 
metrics were averaged with a macro method in 
this study, specifically for precision shown below. 
 

n

macro i

i 1

1
P P

n =

=                                                         (5) 

 
where Pi was the precision of i-th class. N was the 
total number of classifications. Higher values of 
the aforementioned four evaluation metrics 
indicated superior performance. 
 
 

Results 
 

Training results of Cuibi 1 and Yunyan 87 
The two varieties exhibited a similar trend on the 
training set with smooth progression beyond 80 
epochs (Figure 2A). Likewise, a comparable trend 
between the two varieties on the validation set 
was demonstrated, showing convergence after 
30 epochs with the accuracy of Cuibi 1 slightly 
exceeding that of Yunyan 87 (Figure 2B). This 
difference was attributed to the noisier nature of 
the flue-cured tobacco data for Yunyan 87 
compared to Cuibi 1. These findings suggested 
that the Evo-ResNet model demonstrated 
greater stability. 
 
 

 
 
 

 
 
Figure 2. Changes in the loss value of the training set (A) and the 
accuracy of the validation set (B) of the flue-cured tobacco leaf 
images. 
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Figure 3. The loss values of training set of Cuibi 1 (A) and Yunyan 87 (B) flue-cured tobacco leaf images using five different network models. 

 
 
Four evaluation metrics had high values on the 
test set for the two varieties of flue-cured 
tobacco leaves with accuracy of 95.83% and 
99.07%, recall of 95.83% and 99.07%, precision of 
96.16% and 99.10%, and F1-score of 95.78% and 
99.08% for Cuibi 1 and Yunyan 87, respectively. 
These results underscored the model's strong 
performance in grade classification. 
 
Comparative evaluation of multiple methods 
To assess the efficacy of the proposed model, the 
simultaneous training with conventional three-
channel network models including ResNet, 
GoogLeNet, VGGNet, and AlexNet was 
conducted in two different ways with only front 
images of flue-cured tobacco leaves for training, 
validation, and testing as experiment-1, and both 
front and back images as experiment-2. The 
models involved in experiment-1 were denoted 
as ResNet-1, GoogLeNet-1, VGGNet-1, and 
AlexNet-1, while the models involved in 

experiment-2 were denoted as ResNet-2, 
GoogLeNet-2, VGGNet-2, and AlexNet-2. The 
results showed that the loss values of Cuibi 1 and 
Yunyan 87 network models in 100 epochs 
exhibited similar loss patterns in both ResNet and 
Evo-ResNet architectures in both experiments 
with the stabilization occurring approximately 
after epoch 80. Notably, GoogLeNet achieved the 
lowest loss than that of other models, while 
AlexNet had the highest loss than that of other 
models after 100 epochs (Figure 3). The analysis 
results of different network models in two 
experiments demonstrated that, for Cuibi 1, the 
loss values were similar between ResNet-1 and 
ResNet-2, as well as between GoogLeNet-1 and 
GoogLeNet-2, while the loss values of VGGNet-2 
and AlexNet-2 were lower than that of VGGNet-
1 and AlexNet-1, respectively. For the Yunyan 87, 
training loss values of all four networks in 
experiment-2 were lower than those in 
experiment-1.  
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Figure 4. The accuracy value of validation set of Cuibi 1 (A) and Yunyan 87 (B) flue-cured tobacco leaf images using five different network models. 

 
 
Analysis results of validation set 
The changes in accuracy of each network model 
over 100 epochs on the validation sets of Cuibi 1 
and Yunyan 87 were recorded (Figure 4). It was 
evident that there was similar accuracy for 
ResNet, GoogLeNet, and Evo-ResNet regardless 
of model training using experiment-1 or 
experiment-2. However, accuracy metrics of 
VGGNet and AlexNet were relatively lower than 
the others.  
 
Analysis results of test set  
The evaluation metrics for Cuibi 1 and Yunyan 87 
using Evo-ResNet and four conventional CNN 
models were shown in Table 3. Evo-ResNet 
demonstrated superior performance compared 
to the other four conventional CNN models, 
especially for Cuibi 1 variety. However, its 
performance was slightly lower than GoogleNet 
and ResNet for Yunyan 87. Three-channel models 
in experiment-2 resulted in worse evaluation 

metrics compared to that in experiment-1 for 
Cuibi 1, which might be attributed to the 
increased data of front and back images that 
introduced more noise during feature extraction. 
Therefore, adding SE attention mechanism could 
enhance the network's ability to reduce learning 
irrelevant feature, improving the generalization 
ability and prediction effect. For Yunyan 87, all 
classification evaluation metrics of three-channel 
models in experiment-2 were better than those 
in experiment-1.  
 
The discriminative ability of the Evo-ResNet 
network model 
To evaluate the discriminative capability of the 
proposed Evo-ResNet model, the classification 
results on the test set among Evo-ResNet, 
ResNet, GoogleNet, VGGNet, and AlexNet were 
compared. To illustrate the discriminative 
capability of algorithm, the error rate was used to 
evaluation  the  recognition  ability  of  algorithm, 
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Table 3.  The classification evaluation of test set for flue-cured tobacco leaf images using five different network models. 
 

 Cuibi 1  Yunyan 87 

Image Model Accuracy Recall Precision F1-score  Accuracy Recall Precision F1-score 

Front and back Evo-ResNet 95.83% 95.83% 96.16% 95.78%  99.07% 99.07% 99.10% 99.08% 

 ResNet 93.98% 93.98% 94.79% 93.92%  98.77% 98.77% 98.79% 98.76% 
Front GoogLeNet 94.44% 94.44% 95.18% 94.42%  98.15% 98.15% 98.19% 98.15% 

 VGGNet 94.91% 94.91% 95.79% 94.96%  97.22% 97.22% 97.46% 97.22% 
 AlexNet 78.70% 78.70% 81.18% 78.26%  92.28% 92.28% 92.58% 92.20% 

 ResNet 92.82% 92.82% 93.47% 92.78%  99.23% 99.23% 99.24% 99.23% 
Front  GoogLeNet 92.36% 92.36% 92.93% 92.17%  99.69% 99.69% 99.69% 99.69% 

and back VGGNet 91.67% 91.67% 92.41% 91.60%  97.84% 97.84% 97.96% 97.83% 
 AlexNet 85.19% 85.19% 86.65% 84.88%  94.60% 94.60% 95.14% 94.58% 

 
 
which was the number of misclassified divided by 
the total number for each grade. The lower the 
error rate, the stronger the recognition ability. 
The results showed that, in experiment-1, the 
numbers of misclassified images in the 
classification process of ResNet, GoogleNet, and 
VGGNet were 13, 12, 11 for Cuibi 1 with an error 
rate of 6.02%, 5.56%, 5.09%, respectively, while 
the error rate of AlexNet reached 21.30% with 46 
misclassified images. For Yunyan 87, the error 
rates of three-channel models were lower with 
the numbers of misclassified images in ResNet, 
GoogleNet, VGGNet, and AlexNet being 4, 6, 9, 25 
and the corresponding error rates of 1.23%, 
1.85%, 2.78%, 7.72%, respectively. In 
experiment-2, the numbers of misclassified 
images of ResNet, GoogleNet, VGGNet, and 
AlexNet were 31, 33, 36, and 64 for Cuibi 1 with 
error rates of 7.18%, 7.64%, 8.33%, and 14.81%, 
respectively. For Yunyan 87, the numbers of 
misclassified images of ResNet, GoogleNet, 
VGGNet, and AlexNet were 5, 2, 14, and 35, 
respectively, with the corresponding error rates 
of 0.77%, 0.31%, 2.16%, and 5.40%. The 
classification error rate of the proposed Evo-
ResNet model was 3.24% with 7 misclassified 
images in the Cuibi 1 dataset. For the Yunyan 87 
dataset the error rate decreased to 0.93% with 
only 3 misclassified images. The results 
demonstrated that the error rate of Evo-ResNet 
was just slightly higher than ResNet-2 and 
GoogLeNet-2 for Yunyan 87. Nonetheless, Evo-
ResNet still outperformed the other models. 
 
Generalization ability test of network models 

The validation and test set accuracies of the Evo-
ResNet and ResNet models for Cuibi 1 and 
Yunyan 87 were compared to assess the 
generalization ability of the Evo-ResNet model. 
The accuracy of the validation set was the highest 
value in 100 epochs. For Cuibi 1, the accuracy 
difference between validation and test set of the 
Evo-ResNet network model was 3.24%, while the 
ResNet model showed a larger difference of 
4.17% in experiment-1 and 3.71% in experiment-
2, respectively. For Yunyan 87, the accuracy 
difference between validation and test set of 
Evo-ResNet model was 1.85%, while the 
difference of ResNet model was 1.86% in 
experiment-1 and 1.85% in experiment-2. The 
accuracy difference between the validation and 
test sets of Evo-ResNet network model was the 
lowest for Cuibi 1 and Yunyan 87 datasets. 
 
Ablation study of the SE module 
In the Evo-ResNet model network structure, 
interdependencies between model channels 
were found. Therefore, the SE module was added 
to Evo-ResNet model (Evo-ResNet-SE) for feature 
recalibration and performance improvement. 
The results showed that the accuracy, recall, 
precision, and F1-score of Evo-ResNet-SE model 
for Cuibi 1 were 95.83%, 95.83%, 96.16%, and 
95.78%, respectively. In contrast, the evaluation  
metrics of Evo-ResNet model were 94.44%, 
94.44%, 95.03%, and 94.43% in accuracy, recall, 
precision, and F1-score, respectively. For Yunyan 
87, the Evo-ResNet-SE model had substantial 
improvements in all evaluation metrics with the 
accuracy of 99.07%, the recall of 99.07%, the 
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Figure 5. The results of SE module ablation study for Evo-ResNet in training set (A) and validation set (B). 

 
 

 
 
Figure 6. Flowchart of feature visualization for flue-cured tobacco leaf image based on Evo-ResNet model. 

 
 
precision of 99.10%, and the F1-score of 99.08%, 
while the metrics of the Evo-ResNet model were 
96.30% for accuracy, recall, and F1-score, and 
96.78% for precision. The network models with 

SE module (Evo-ResNet-SE) and without SE 
module (Evo-ResNet) showed a consistent trend 
on the training set, both showing a lower loss 
value in the Yunyan 87 dataset (Figure 5A). The 
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accuracy in validation set demonstrated greater 
fluctuations with the Evo-ResNet-SE model 
achieving higher accuracy compared to the Evo-
ResNet model (Figure 5B). The ablation analysis 
of the SE module revealed its key role in 
improving the performance of Evo-ResNet 
network model.  
 
Image recognition effect based on Evo-ResNet 
model 
In the practical application of grade identification 
for flue-cured tobacco leaves, the visual 
variations of image features across layers in the 
Evo-ResNet model were shown in Figure 6. The 
feature heatmaps of each network layer showed 
that the shallow feature maps suggested that the 
network had extracted characteristics from both 
front and back images of flue-cured tobacco 
leaves. The final activation map showed that the 
model's attention to leaf features was focused on 
the main vein region, the darker colored wrinkled 
region, and the tobacco texture, which indicated 
that the proposed model had effectively utilized 
both the front and back features of the flue-cured 
tobacco leaves, enhancing its performance in 
grade classification. 
 
 

Discussion 
 
Flue-cured tobacco classification significantly 
influences the tobacco industry's development. 
Manual grading is time-consuming and labor-
intensive with unstable accuracy rates, especially 
during the acquisition of flue-cured tobacco 
leaves. Artificial and intelligent grading mostly 
relies on the front side of flue-cured tobacco. 
Recently, there has been growing attention on 
the back side of flue-cured tobacco. Zhang et al. 
studied color differences between front and back 
sides of tobacco leaves sourced from Tongren, 
Zhumadian, Henan, China and Ji'an and assessed 
their impact on sensory evaluation quality [18]. Li 
et al. investigated color discrepancies between 
the front and back sides of tobacco leaves 
sourced from different production areas of the 
Yunnan's specialty flue-cured tobacco variety 
‘Honghua Dajinyuan’ [19]. Lu et al. initially 

introduced the classification model to identify 
front side images by front and back flue-cured 
tobacco leaf, and then graded these images [12]. 
This study processed both front and back sides 
images of flue-cured tobacco leaves concurrently 
to improve the accuracy of intelligent grading. 
During intelligent grading of flue-cured tobacco 
leaves, image collection has usually been 
achieved by transporting leaves to designated 
stations for automated capture by HD or 
hyperspectral cameras. Nonetheless, these 
equipment-intensive approaches are expensive, 
and conveyor belt speed fluctuations during 
assembly line imaging may introduce blurred 
views. Moreover, external factors like leaf angle, 
position, and lighting variations also affect image 
quality consistency. The widespread use of high-
resolution mobile phones has facilitated image 
capturing and precise arrangement of flue-cured 
tobacco, thereby increasing interest in computer 
vision research using mobile phone images. Some 
researchers employed an oven-drying method to 
measure leaf moisture content using image data 
collected via cell phones. The grayscale 
histogram image processing techniques were 
utilized to extract leaf color eigenvalues and 
analyze their correlation with moisture content 
[20]. Cell phone-based image collection has 
broader applications in the intelligent 
recognition of fresh tobacco maturity. Wang et 
al. captured images of five maturity levels (M1 to 
M5) of Cuibi 1 (CB-1) fresh tobacco leaves from 
the upper, middle, and lower sections of the 
leaves using cell phones and trained these data 
with a lightweight YOLO network to establish a 
maturity recognition model for five maturity 
levels of tobacco leaves [21]. In this study, the 
application of cell phone-captured images in 
intelligent grading of flue-cured tobacco was 
explored and a convolutional neural network 
model was constructed. The approach of using 
cell phones for data collection demonstrated its 
potential for future applications in production 
processes. This method took advantage of the 
ubiquity and versatility of modern phone 
cameras and avoided the need to adhere strictly 
to specific cell phone models or pixel 
requirements. With further development, it 
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could evolve into a dedicated mobile application 
for flue-cured tobacco procurement with 
significant practical value. This study also 
improved the intelligent classification algorithm 
for flue-cured tobacco based on ResNet. 
Comparative analysis with traditional algorithms 
such as GoogLeNet, VGGNet, and AlexNet 
showed that GoogLeNet outperformed Evo-
ResNet, while AlexNet was the least effective in 
grading flue-cured tobacco images. The proposed 
method held promise for further optimization of 
GoogLeNet, VGGNet, and AlexNet. In the future, 
the following two aspects may be focused, which 
include adjusting the model structure to reduce 
the parameter count when using both front and 
back images of flue-cured tobacco leaves 
simultaneously that increases the dataset 
volume and potentially affects training speed and 
improving model accuracy by enhancing the 
quality of training dataset because expert dataset 
obtained from manual grading may contain 
mislabeled samples. Despite attempts to identify 
these by discriminative analysis methods, the 
results are still unsatisfactory. Image processing 
methods could extract features of flue-cured 
tobacco and detect mislabeled samples. Based 
on comprehensive prior analysis, there is limited 
intelligent grading research that relies solely on 
single cell phone-captured flue-cured tobacco 
leaf images and integrates both front and back 
image data to improve classification 
performance. This research introduced an 
enhanced algorithm that utilized a six-channel 
ResNet convolutional neural network as input. In 
the Evo-ResNet model, corresponding datasets 
were created to ensure the one-to-one 
correspondence of front and back image data 
inputs. A program was devised to load front and 
back image data separately and concatenate 
them into a six-channel tensor along the 
channels. Subsequently, the input channels of 
the initial convolutional layer in ResNet were set 
to six to accept a six-channel tensor input. 
Additionally, an SE attention mechanism was 
integrated, and the output channel number of 
the fully connected layer was set to six. The 
generalization capability of the Evo-ResNet was 
outstanding, enabling more precise intelligent 

grading of flue-cured tobacco, providing a 
valuable reference for the rapid and accurate 
classification during flue-cured tobacco 
purchasing. 
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