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Urban landscapes including parks, green spaces, streetscapes, and built environments play a pivotal role in 
shaping and impacting the public health and well-being of urban residents. Given the increasing pollution 
problems facing cities and the overall living standards in urban areas, it is imperative to comprehend the 
landscape's effect on health. This research established multimedia environmental monitoring data to evaluate 
health risks in various urban environments and utilized machine learning approaches to understand the intricate 
connection between urban landscapes and health. The research examined the various urban landscapes with high, 
moderate, and low pollution levels. The Enhanced Chimp Optimized Resilient Logistic Regression (ECO-RLR) model 
was proposed to synthesize multimedia environmental monitoring data to assess public health risk in various 
urban landscapes. Multimedia environmental monitoring data were collected from multiple sources. The data 
was preprocessed to handle missing values and outliers and normalize the data for further analysis. The results 
showed that the proposed method performed well with various evaluation parameters of MAE (5.02 μg/m3), 
RMSE (8.42 μg/m3), and R² (0.92). The result demonstrated that the proposed model could effectively estimate 
health risks in urban environments, adapting to the various landscapes. The reliability of the model in assessing 
health risks in diverse urban environments was validated by the key indices of the noise pollution index (NPI), 
thermal comfort index (TCI), and indoor air quality index (IAQI). The study showed that machine learning could 
be used to analyze urban landscapes that affected people's health and well-being. The outcomes demonstrated 
that the proposed model adapted to various urban environments and could be used to evaluate the risk of 
environmental health. 
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Introduction 
 
The urban environment is being accepted not just 
as visual expression and architecture but also as 
an instrument with powerful influences on health 
and education [1]. Lots of challenges arise as 
cities grow and populations increase including 
polluted air, noise, reduced size of greens, 

inadequate open spaces, and lack of recreational 
facilities. These factors influence the overall well-
being of urban citizens and lead to several health 
complications including respiratory illnesses and 
stress levels [2]. The idea of creating urban 
environments for health and the health creating 
approach have received considerable interest 
and identical responses from policymakers, 
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urban designers, and health promoters. The 
premise of this approach is the notion that urban 
contexts might be purposefully shaped to boost 
performance in public health. The use of parks, 
gardens, and green roofs in the built-up 
environment has been confirmed to offer 
numerous advantages [3]. Being close to nature 
has been known to relay stress, improve mood, 
and even sharpen the mind’s capabilities. 
Further, green spaces promote physical activity 
like walking, jogging, and outdoor sports that 
help in preventing lifestyle diseases like obesity, 
diabetes, cardiovascular diseases. In addition, 
other people may be aware of the proper design 
of the urban environment and respond to such 
exposure, this availability certainly enhances 
community interaction, relieves stress, and 
therefore improves mental well-being [4]. 
Patterns of the built environment in urban areas 
also contribute to the prevention and control of 
environmental health risks. Measures that can be 
taken include improving air quality, using 
greenery to reduce the heat island effect in 
residential areas, and properly treating 
stormwater in advanced designs to mitigate the 
adverse health effects of the urban environment. 
[5]. Further, the direct use of permeable surfaces 
can be useful to control water runoff and avoid 
water accumulation and potential water-borne 
sickness. The integration of public health into the 
designing of urban landscapes calls for multi-
sectorial engagements, in which it implies an 
integration of urban planning, architecture, 
public health, and environmental science [6]. 
Cities may incorporate healthy urban planning by 
focusing not only on the satisfaction of the 
population but also on developing better, more 
sustainable, and resilient environments for 
future generations. A properly designed urban 
environment is likely to become an important 
instrument for the enhancement of human well-
being and timely diagnosis of health-related 
issues in post-industrial societies where the 
urban population is constantly growing [7]. 
Urban spatial limitations, difficulties in 
reconciling social, environmental and economic 
variables, difficulties in quantifying long-term 
health consequences and lack of funding for 

integrated ecological infrastructure are some of 
the limitations. To establish multimedia 
environmental monitoring data to evaluate 
health risks in various urban environments, 
machine learning (ML) approaches can be used to 
understand the intricate connection between 
urban landscapes and health. 
 
Semeraro et al. developed a methodological 
solution with great scalability and 
implementation cost by combining statistical and 
computational techniques. The approach 
supported the identification and measurement 
of diverse perceptions and their relationship to 
the presence of landscape features with 
implementation of public space perception while 
gathering respondents' sociodemographic data. 
By using a parameterization of pictures that 
simultaneously took object identification and 
semantic segmentation for each object as input, 
it adopted a discrete choice framework to 
quantify impressions of the spaces [8]. Suel et al. 
examined a technique depending on semantic 
segmentation handling of street view images to 
determine the green view index (GVI) of urban 
streets. The panoramic view green view index 
(PVGVI) was suggested to measure the amount of 
visible street-level greenery, and the outcomes 
were verified by comparing them with those 
obtained from traditional assessment and the 
method. The pseudo-Siamese pyramid network 
(PSPN) method could identify nearly all the 
greenery information from the street vision 
images and determine the PVGVI [9]. Kisvarga et 
al. investigated the connections between urban 
vegetation and pedestrian activity by measuring 
the real accessibility of pedestrian to urban 
greenery and found that it could be accomplished 
with great accuracy and efficiency using Google 
Street View (GSV) and semantic segmentation, 
which allowed GVI to accurately assess how 
greenery affected human behavior and were 
significant for investigating the complex link 
between pedestrian activity and urban greenness 
from a variety of perspectives, particularly about 
measurements of greenery [10]. Thompson et al. 
examined if the land use's architectural spatial 
structure was important for urban heat island 
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(UHI) using ML techniques. Morphological Spatial 
Pattern Analysis (MSPA) was used to assess the 
architectural features of green space. The linear 
relationships between the UHI level and a group 
of potentially influencing factors were assessed 
using the association coefficient. A rapidly 
urbanizing metropolis demonstrated the 
important influence of architectural 
characteristics [11]. Ventriglio et al. combined 
temperatures at night with the percentage of 
forest cover, quantity of permeable surfaces, and 
poverty level and revealed that these factors 
were all highly correlated with UHI. The research 
investigated possible connections between 
excessive electricity and heat and past 
demographic, socioeconomic, and land use 
aspects using an additional dataset on the spatial 
pattern of the climate throughout a heat wave 
[12]. Xia et al. proposed a deep learning-based 
technique for evaluating urban inequality by 
combining street-level and satellite. Three 
chosen outputs including income, overcrowding, 
and environmental deprivation were all 
quantified in decile classes. The research used 
Mean Absolute Error (MAE) to compare the 
performance of proposed multimodal models 
with similar unimodal [13]. Yudono et al. 
investigated the use of ML technology and large 
urban geospatial data to complete the landscape 
evaluation of urban regions and develop a 
technological method for character assessment 
of the urban landscape relevant to the block size. 
With the ring road serving as the barrier, the 
study discovered that urban landscape 
characteristics varied. However, each zone 
displayed a mix of various landscape character 
proportions. The process of mapping urban 
landscapes was challenging and complex due to 
the geographical heterogeneity and spectrum 
overlaps of urban attributes [14]. Zhang et al. 
implemented support vector machine (SVM) and 
multilayer perceptron artificial neural network 
(MLP-ANN) ML classifier techniques, as well as 
group decisions, tree-based classifiers including 
gradient boosting (GTB) and random forest (RF) 
to map urban land use classes using 
multitemporal and multisensor Landsat data and 
evaluated their accuracies [15]. 

This research proposed an enhanced chimp 
optimized resilient logistic regression (ECO-RLR) 
model to synthesize multimedia environmental 
monitoring data to assess public health risk in 
various urban landscapes by collecting data from 
various multimedia environmental monitoring 
sources including air quality, thermal comfort, 
and noise pollution indices. Feature scaling 
through the Z-score normalization was used for 
data pre-processing, and then, ECO-RLR was 
applied to synthesize the features for health risk 
prediction in urban environments. The model 
was further assessed through different 
parameters to confirm the accuracy when it was 
used to evaluate risks in different urban settings. 
 
 

Materials and methods 
 
Data collection 
The data collection included gathering 
comprehensive multimedia environmental data 
from several urban regions in China, which 
included key indicators of air quality levels (PM 
2.5, CO2), noise pollution levels, thermal comfort 
indices, and vegetation coverage in urban parks 
and green spaces. Data were attained from cities 
with varying pollution levels including high 
pollution (region 1), moderate pollution (region 
2), and low pollution (region 3) to provide diverse 
perceptions. At least 1,000 data points from each 
city were included with a total of 3,000 data 
points for comprehensive analysis. The dataset 
encompassed 30 Chinese metropolises including 
urban areas of 22 provincial capitals. To account 
for China’s vast territorial expanse and the 
heterogeneity of its landforms, the 30 
metropolises were divided into four major 
geographic regions as the northern region 
including cities of Harbin, Changchun, Shenyang, 
Dalian, Beijing, Tianjin, Shijiazhuang, Taiyuan, 
Jinan, Zhengzhou, and Xi’an, the southern region 
including Shanghai, Nanjing, Hangzhou, Hefei, 
Ningbo, Wuhan, Nanchang, Chengdu, Chongqing, 
Guiyang, Kunming, Nanning, Fuzhou, Guangzhou, 
and Haikou, the northwest region including 
Hohhot, Yinchuan, and Urumqi, and the Qinghai-
Tibet region including Xining and Lhasa. All data 
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were processed using Python 3.12 
(https://www.python.org/) on Windows 11 with 
Core i7 processor and 32 GB of RAM.  
  
Data preprocessing 
The data preprocessing used Z-score 
normalisation to convert values into an array of 
standardised values with a standard deviation of 
1 and an average deviation of 0. By normalising 
the data of noise, air quality, and greenery to 
enhance distribution across the city 
environment, it was possible to compare their 
effects on the health and well-being of people in 
different urban areas. Z-score normalization for 
urban construction that involved public health 
and well-being converted data to mean zero and 
unit variance, which helped comparing different 
factors such as air quality and green spaces by 
adjusting for varying scales. Raw data points that 
were above or below the population mean were 
represented by Z-scores, while traditional 
standardization and normalization techniques 
calculated the total amount of standard 
deviations. Ideally, the standard deviation should 
range between -3 and +3. It normalized data that 
had been set to a previously specified scale to 
convert any data with different values to a 
standard value as follows. 
 

𝑧_𝑠𝑐𝑜𝑟𝑒 =
𝑤−𝜇

𝜎
               (1) 

 
where 𝜎  was the standard deviation. 𝜇  was the 
average. 𝑤 was the mean of a particular sample.  
 
Enhanced chimp optimized - resilient logistic 
regression (ECO-RLR) 
The ECO-RLR was an integration of ECO and RLR 
models with the specific aim of enhancing the 
environment for well-being in the cities. ECO 
learned from chimp to search for optimal 
solutions for some of the potential issues related 
to the layout of cities including green zones and 
polluting emissions. RLR performed well in 
situations with noise and missing values, which 
added to the practical use of forecasting health 
outcomes. ECO-RLR improved the efficacy of RLR 
predictions concerning health outcomes such as 

respiratory diseases or mental health problems 
by fine-tuning the optimization technique 
through chimp optimization. For urban planning, 
ECO-RLR assisted in the determination of the best 
course of action in terms of planning choices for 
public health, resilience, as well as well-being 
through assessment of factors such as air quality, 
accessibility to green spaces, and noise pollution. 
 
(1) Resilient logistic regression (RLR) 
RLR is an improved statistical model for 
predicting binary outcomes or states that 
addresses gaps and noise in the data. In the 
urban environment, RLR could determine the 
effects of pollutants on population welfare to 
provide accurate predictions. Several 
characteristic features were used to represent 
the urban landscapes. When the data sample 
consisted of the urban landscape and 
characteristic parameters, the LR model assessed 
the landscape. The covariate variables that 
influenced the landscape parameters were 
represented by the vector 𝑊(𝑠) =
{𝑤1(𝑠), 𝑤2(𝑠), … . , 𝑤𝑛(𝑠)} , where 𝑛 was the 
number of covariate elements. The conditional 
probabilities of the non-occurring event (𝑧𝑠 = 1) 
was shown below. 
 

𝑂(𝑧𝑠|𝑊(𝑠)) =
exp(𝛽0+𝛽1𝑤1+𝛽2𝑤2+⋯+𝛽𝑛𝑤𝑛(𝑠))

1+exp(𝛽0+𝛽1𝑤1+𝛽2𝑤2+⋯+𝛽𝑛𝑤𝑛(𝑠))
        (2) 

 
where 𝛽0, 𝛽1, … . . , 𝛽𝑛 were the coefficients of 
regression of the covariate factor with  𝛽0 > 0. 
The normal and failure stages of the bearing 
condition were separated at 𝑠, whereas 𝑧𝑠 = 0 
replaced the failure state, 𝑧𝑠 = 1  replaced the 
normal state. The typical signal characteristics 
from the condition of the machinery at the 
moment in question were represented by the 
covariate variable 𝑊(𝑠) =
{𝑤1(𝑠), 𝑤2(𝑠), … . , 𝑤𝑛(𝑠)}.  A nonlinear 
connection existed among the covariate variable 
𝑊(𝑠)  and the rolling urban landscape 𝑧𝑠 . In 
urban landscapes, 𝑊(𝑠)  was the covariate 
factor. The expression for the landscape 

reliability function ratio was 𝐸(𝑠|𝑊(𝑠)) = 1 −

𝑄(𝑠|𝑊(𝑠))  function distributing failure 

accumulation to 𝑄(𝑠|𝑊(𝑠))  as follows. 
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𝑄(𝑠|𝑊(𝑠))

1−𝑄(𝑠|𝑊(𝑠))
= exp(𝛽0 + 𝛽1𝑤1(𝑠) + ⋯ . +𝛽𝑛𝑤𝑛(𝑠))      (3) 

 
The logarithmic form of the highest probability 
estimation approach was shown in equation (4) 
and might be utilized to solve the parameters. 
 

𝐼𝑛[𝐾(𝐴)] = ∑ [𝑧𝑗𝐵𝑋(𝑠) − 𝐼𝑛(1 + exp(𝐵𝑋(𝑠))))] 𝑗         (4) 

 
The weights of the covariate factors were 
represented by the intercept  𝛽0, 𝛽0, 𝛽1, … … , 𝛽𝑛. 
The value 𝛽𝑗 > 0 indicated the event occurrence 

likelihood raised as the characteristic parameter 
𝑤𝑗  raised. 𝛽𝑗 = 0  showed that the unique factor 

did not affect this model. Given the nonlinearity 
of the logistics model, 𝛽0, 𝛽1, … . . , 𝛽𝑛  might be 
estimated using the highest likelihood estimation 

technique, where 𝛽̂   represented the highest 
probability estimate of 𝛽, which was the urban 
landscape function as presented in equation (5). 
 

𝑂(𝑠|𝑊(𝑠)) =
exp(𝛽̂0+𝛽̂1𝑤1(𝑠)+⋯+𝛽̂𝑛𝑤𝑛(𝑠))

1+exp(𝛽̂0+𝛽̂1𝑔1(𝑠)+𝛽̂2𝑔2(𝑠)+⋯+𝛽̂𝑛𝑔𝑛(𝑠))
           (5) 

 
The accuracy of the residual life forecast model 
was weakened by the LR model's inability to 
adjust to variation and disregard the prior 
deterioration trend. The ELR was then proposed 
to consider the urban landscape deterioration 
pattern while predicting residual life without 
being affected by variations. The ELR reliability 
function was shown below. 
 

𝑂(𝑠|𝑊(𝑠)) =
exp(𝛽̂0+𝛽̂1𝑔1(𝑠)+𝛽̂1𝑔2+⋯+𝛽̂𝑛𝑔𝑛(𝑠))

1+exp(𝛽̂0+𝛽̂1𝑔1(𝑠)+𝛽̂2𝑔2(𝑠)+⋯+𝛽̂𝑛𝑔𝑛(𝑠))
          (6) 

 
where the function of 𝑔𝑛(𝑠)  was 𝑤𝑛(𝑠) . The 
characteristic variables that represented the 
urban landscape condition could be expressed 
using the function. The ELR-associated functions 
were then expressed as follows. 
 

𝑔𝑗(𝑠) =
𝑣(𝑠)

𝑥(𝑠)
               (7) 

 

𝑣(𝑠) = 𝛼𝑛𝑤𝑗(𝑠𝑛) + 𝛼𝑛+1𝑤𝑗(𝑠𝑛+1) + ⋯ 𝛼𝑛+𝑚𝑤𝑗(𝑠𝑛+𝑚) + 𝑤𝑗(𝑠)          (8) 
 

𝛼𝑖 =
𝑤𝑗(𝑠)−𝑤𝑗(𝑠𝑖)

(𝑚+1)𝑤𝑗(𝑠)−𝑤𝑗(𝑠𝑛)−𝑤𝑗(𝑠𝑛+1)−⋯−𝑤𝑗(𝑠𝑛+𝑚)
            (9) 

where the difference among the eigenvalues was 
𝑠. The eigenvalues at 𝑠𝑖 related to 𝛼𝑖(𝑖 = 𝑛, 𝑛 +
1, … , 𝑛 + 𝑚)  was the mean of 𝛼𝑖 and the 
associated covariates 𝑋(𝑠). 𝑤𝑠  was the average 
value of 𝑣(𝑠)  during a typical workday. The 
amplitude and distinctive trends were nearly 
constant when compared to the initial 
information as shown in equations (8) and (9), 
which also showed that the ELR took into 
consideration the landscape deteriorating 
tendency and lessened the impact of random 
fluctuations. According to equation (7), the ELR 
had a high degree of generality and precision and 
was not impacted by the production and 
installation of a particular landscape. The 
probability function's logarithmic version could 
be expressed as follows. 
 
𝐼𝑛[𝐾(𝐴)] = ∑ [𝑧𝑗𝐵𝐻(𝑠) − 𝐼𝑛(1 + exp(𝐵𝐻(𝑠)))]𝑗        (10) 
 
The urban landscape remaining life at instant 
𝑉(𝑢): 𝑠 < 𝑢 < ∞  was roughly represented as 
equation (11), assuming the covariate variable 
𝐾(𝑠) = 𝐹(𝑆 − 𝑠|𝑆 > 𝑠)] being expected. 
  

𝐾̂(𝑠) ≈
1

𝑄̂(𝑠|𝑉(𝑠))
∫ 𝑄̂(𝑠|𝑉(𝜏))𝑑𝜏

∞

𝑠
          (11) 

 
Because it ignored the landscape deterioration 
trend and only took into consideration the 
landscape characteristic parameters, the LR 
model was vulnerable to interference. The 
residual life forecast result introduced errors in 
the reliability evaluation. In contrast, the ELR 
took advantage of the landscape deterioration 
trend and reduced the impact of unpredictable 
fluctuations, resulting in more precise 
predictions.  
 
(2) Enhanced chimp optimization (ECO) 
ECO refers to a refined optimization algorithm 
inspired by the social and foraging behaviour of 
chimps. It was applied to urban landscapes to 
improve designs that promoted public health and 
well-being by optimizing green spaces and 
resource distribution. CO considered the difficult 
to accurately determine the global optimum in 
complicated scenarios. Low search accuracy, 
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poor global search performance, and a poor 
capacity to strike a balance between local 
development and global exploration were all 
features of the basic CO, which was more 
significant data that happened to show 
significant nonlinearity over the whole working 
range for the parameter identification issues. A 
visual search mechanism and an elite opposition-
based learning method were two optimisation 
strategies that were included in CO to enhance its 
performance in tackling those issues. One 
approach was employed to improve CO 
exploration performance, and the other was 
utilized to enhance CO exploitation performance 
(Figure 1).  
 
 

 
 
Figure 1. The flow chart of ECO. 

 
 

Elite opposition-based learning strategy (EOBLS) 
Choosing the best responses to pass on to the 
following generation involves calculating and 
evaluating both the elite opposing alternatives 
and the present viable solutions that are 
equivalent to chimp people at the same time. 
According to ECO, elite people were those who 
ranked in the top ten percent of the population 
in terms of fitness. The elite opposing solution 
was defined as follows. When 𝑦𝑗 =

(𝑦𝑗,1, 𝑧𝑗,2, … . , 𝑧𝑗,) 𝐶, the solution's elite inversed. 

𝑦𝑗
𝑓

= (𝑦𝑗,1
𝑓

, 𝑦𝑗,2
𝑓

, … . . , 𝑦𝑗,𝐶
𝑓

)  was calculated as 

follows. 
 
𝑦𝑗

𝑓
= 𝑞. (𝜇𝑖 + 𝜆𝑖) − 𝑦𝑗,𝑖  ,   𝑗 = 1,2, … . . , 𝑀, 𝑖 = 1,2, … . . , 𝐶     (12) 

 
where 𝑀  was the population size (the total 
number of chimps). 𝐶  was the spatial depth. 𝑞 
was a generalized coefficient that indicated a 
random parameter evenly distributed among 
(0, 1).  𝜇𝑖  and 𝜆𝑖  were the lowest and highest 
values of the 𝑖-th dimensional parameter for the 
best solutions, respectively. Notably, the search 
experience was maintained by using 𝜇𝑖 and 𝜆𝑖 as 
dynamic bounds that took the place of fixed 
ones. On the other hand, the elite opposing 
solutions could emerge from (𝜇𝑖 , 𝜆𝑖), and ceased 
to be viable. In this instance, these responses 
would be reset using a random generating 
technique as shown below. 
 

𝑦𝑗,𝑖
𝑓

= 𝑟𝑎𝑛𝑑(𝜇𝑖 , 𝜆𝑖), 𝑖𝑓  𝑦𝑗,𝑖
𝑓

< 𝜇𝑖  𝑜𝑟 𝑦𝑗,𝑖
𝑓

> 𝜆𝑖       (13) 

 
This optimisation technique helped CO break 
from local optimal conditions and enhanced its 
exploration performance by increasing the 
population diversity and expanding its 
exploration space. 
 
Visual search mechanism (VSM) 
The top four search agents could gather more 
detailed information about the ideal solution 
because this model had a more sophisticated 
grasp of the prey's position. As a result, there was 
a good chance that there were other better 
alternatives close to their locations than the one 
that  was  now  the  best. It provided the attacker 
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Table 1. IAQI result for impact of public health and well-being in urban landscape. 
 

Pollutant Low pollution Moderate pollution High pollution Hazardous pollution 

PM2.5 20% 35% 65% 90% 

CO2 350 𝑝𝑝𝑚 500 𝑝𝑝𝑚 700 𝑝𝑝𝑚 1,000 𝑝𝑝𝑚 

CO 1 𝑝𝑝𝑚 4 𝑝𝑝𝑚 8 𝑝𝑝𝑚 15 𝑝𝑝𝑚 

VOC 0.5 𝑚𝑔 1.0 𝑚𝑔 2.0 𝑚𝑔 3.0 𝑚𝑔 

Relative humidity 45% 55% 65% 75% 

 
 
the capacity to visually seek, allowing it to 
actively look for a better location outside of the 
passive optimisation that the chimp population 
induced, which would update its location in time 
to increase hunting precision and would boost CO 
exploitation efficiency and convergence 
accuracy. The process for using the VSM included 
3 steps. The step 1 was to determine the 
maximum optical distance (𝑞𝑛)  among the 
attack, and each of the three chimp species were 
shown in equation (12). The step 2 was to create 

a candidate point 𝑦̃𝑏 = (𝑦̃𝑏
1, 𝑦̃𝑏

2, … . . , 𝑦̃𝑏
𝐶)  by 

actively searching the optical area with a radius 
of 𝑞𝑛 . The step 3 was to choose the better 
position as the attacker's ultimate location in the 
current iteration by comparing the fitness 
metrics of its candidate location and current 
location, which was represented by equation 
(14). 
 

𝑞𝑛 = max{|𝑦𝑏
𝑖 − 𝑦𝑎

𝑖 |, |𝑦𝑏
𝑖 − 𝑦𝑑

𝑖 |, |𝑦𝑏
𝑖 − 𝑦𝑐

𝑖|}     (14) 

 

𝑦̃𝑏
𝑖 = 𝑦𝑏

𝑖 + (2. 𝑟𝑎𝑛𝑑 − 1). 𝑞𝑛           (15) 
 

𝑦𝑏 = {
𝑦̃𝑏 ,    𝑖𝑓 𝑒(𝑦̃𝑏) < 𝑒(𝑦𝑏)

𝑦𝑏 ,   𝑒𝑙𝑠𝑒
           (16) 

 

where 𝑖 = 1,2, … , 𝐶.  𝑦𝑏
𝑖 , 𝑦𝑎

𝑖 , 𝑦𝑑
𝑖 , 𝑎𝑛𝑑 𝑦𝑐

𝑖   was the 
fitness value. 𝑟 was a number generated at 
random in the interval (0, 1).  𝑒  was the 
attacker's, obstacle, chaser, and driver, 
respectively, in their corresponding 𝑖 -th 
dimensional spaces.  
 
Validation of ECO-RLR 
The proposed model (ECO-RLR) was validated by 
comparing with the traditional models of genetic 
algorithm-support vector machine (GA-SVM) [16] 

and spatiotemporal convolution feature random 
forest (SCRF) [17]. The parameters of MAE, root 
mean square error (RMSE), and R2 were used to 
determine the effectiveness and accuracy of 
proposed model.  
 
 

Results 
 

Indoor air quality index (IAQI)  
Urban landscapes often face varying levels of air 
pollution that directly impact public health and 
well-being. Pollutants throughout the region 
included PM 2.5, CO2, CO, volatile organic 
compounds (VOCs), and relative humidity played 
a critical role in determining indoor air quality. 
The results showed that PM2.5 at low levels 
(20%) had a minimal effect, but at hazardous 
levels (90%), could severely affect respiratory 
health. CO2 concentrations from 350 ppm to 
1,000 ppm indicated escalating risks of carbon 
accumulation, contributing to climate change. 
High levels of CO (15 ppm) and VOCs (3.0 mg) led 
to more severe respiratory and cardiovascular 
issues. Relative humidity also impacted health 
with values above 75% linked to discomfort and 
increased susceptibility to respiratory diseases 
(Table 1). Therefore, maintaining air quality was 
essential for enhancing well-being in urban 
environments.  
 
Thermal comfort index (TCI)  
The results showed that the pollution was high in 
region 1 with the temperature of 35°C, 70% 
humidity, and 10 km/h wind speed. The TCI 
comfort level was at 75%, and 45% of the 
population experienced health issues due to the 
harsh environmental conditions. Region 2 
demonstrated   moderate   pollution   with   28°C, 
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Table 2. TCI results in the impact of public health and well-being in urban landscape. 
 

Region Pollution 
level 

Air temperature 
(C°) 

Humidity 
(%) 

Wind speed 
(Km/h) 

Radiant 
heat (W/m) 

TCI comfort 
level (%) 

Population health 
issues (%) 

1 High 35 70 10 500 75 45 

2 Moderate 28 60 12 400 60 25 

3 Low 25 50 15 350 85 10 

 
 
60% humidity, and 12 km/h wind speed, which 
had a comfort level of 60%, and 25% of people 
reported health problems. Region 3 as a low 
pollution site showed the temperature of 25°C, 
50% humidity, 15 km/h wind speed, which had 
the higher comfort level at 85%, and only 10% of 
the population faced health concerns, indicating 
a positive correlation between environmental 
quality and public health (Table 2). 
 
Noise pollution index (NPI) 
The sound pressure level (SPL) was the highest in 
region 1 as 25%, indicating significant noise 
levels, while region 3 experienced a much lower 
SPL of 5%. The "Duration of exposure" to noise 
was most continued in region 1 as 30% and 
decreased in region 2 as 20% and region 3 as 10%. 
Additionally, the "Frequency spectrum" of noise 
was higher in region 1 of 20% and lower in region 
3 of 10%. “Time of day" showed the highest 
impact in region 2 with 25% and the lowest in 
region 1 at 10%. The "Source of noise" had the 
most substantial effect in region 1 at 40%, while 
it decreased in other regions. These variables 
collectively affected the public health outcomes 
across urban landscapes (Figure 2). 
 
Mean absolute error (MAE) 
MAE for the urban landscape health and well-
being model measured the average absolute 
differences between predicted and actual 
outcomes related to public health factors, 
indicating the accuracy of the system in 
forecasting health impacts and well-being needs 
in urban settings. A lower MAE indicated better 
prediction performance, leading to more 
efficient decision-making in urban planning and 
public health management. The proposed ECO-
RLR strategy achieved an MAE value of 5.02 
μg/m3, while the traditional GA-SVM and SCRF 

approaches yielded higher MAE values of 10.07 
μg/m3 and 6.11 μg/m3, respectively (Figure 3) 
(Table 3). The results demonstrated the 
proposed model’s effectiveness in promoting 
sustainable and health-conscious urban 
landscape development.  
 
 

 
 
Figure 2. NPI result for impact of public health and well-being in 
urban landscape. 

 
 

 
 
Figure 3. MAE result for public health and well-being in urban 
landscape.
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Root mean square error (RMSE)  
The RMSE for the urban landscape health and 
well-being model quantified the square root of 
the average squared differences between 
predicted and actual public health outcomes, 
which provided a clear measure of prediction 
accuracy with a low RMSE, indicating better 
model performance. The proposed ECO-RLR 
model achieved an RMSE value of 8.42 μg/m3, 
whereas the traditional methods of GA-SVM and 
SCRF resulted in higher RMSE values of 12.1 
μg/m3 and 9.87 μg/m3, respectively, 
demonstrating that the proposed model ECO-RLR 
enhanced effectiveness in public health and well-
being (Figure 4) (Table 3). 
 
 

 
 
Figure 4. RMSE results for public health and well-being in urban 
landscape. 

 
 
R2 value    
The fraction of variability in public health results 
that could be explained by urban landscape 
characteristics was shown by the R2 values for the 
urban landscapes and public well-being and 
health system. A higher R² suggested a stronger 
correlation between urban landscape features 
and overall health and well-being. The proposed 
ECO-RLR model achieved a value of 0.92, which 
was higher than that of GA-SVM and SCRF of 0.84 
and 0.83, respectively. The results indicated that 
the proposed model performed noticeably better 
than current techniques in precisely estimating 
how urban environments affected people's 
health and well-being (Table 3). 

Table 3. Overall comparison result of MAE, RMSE, R2. 
 

Methods MAE (µg/m3) RMSE (µg/m3) 𝑹𝟐 
GA-SVM 10.07 12.1 0.84 

SCRF 6.11 9.87 0.83 

ECO-RLR 5.02 8.42 0.92 

 
 

Discussion 
 
Spatial environments are very important in the 
social determinants of health, which includes 
availability and access to resources such as clean 
air and green spaces. The process of urbanization 
and climate change requires pursuing sustainable 
design concepts to improve the health and 
stability of communities. Although the traditional 
GA-SVM and SCRF models show promises for the 
optimization of the urban environment for public 
health and well-being, they both have 
drawbacks, including that both approaches use 
large sets of data for training, which may not be 
always available and provide information about 
the urban environment. Furthermore, the 
performance of GA-SVM is affected by over 
fitting if tuned in inadequately characteristic of 
diverse urban contexts where multiple factors 
impact health keys. SCRF performs well in 
utilizing spatial-temporal features for prediction, 
but drawbacks could cover data heterogeneity or 
missing data problems, so it is not flexible for 
generalizing predictions to other cities or 
communities. Large data processing is also a 
requirement for both models, which can become 
an issue for broad urban health programs. The 
proposed ECO-RLR method in this study helped 
to eliminate deficits of the existing GA-SVM and 
SCRF models through the integration of more 
progressive optimization procedures and the 
ability to counter data instability. Thus, the ECO-
RLR method decreased over fitting through 
applied robust regularization and enhanced 
generalization for different environments. In 
addition, ECO-RLR had the advantage of 
scalability, which proved it more useful when 
applied to large-scale health projects, especially 
in urban areas and made it the method ideally in 
real-world urban health analysis. The effect of 
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urban landscapes on public health and well-being 
was investigated in this research by integrating 
multimedia environmental monitoring data with 
ML methods. Data was collected from multiple 
sources that related to environmental factors 
including air quality, thermal comfort, and noise 
pollution. The datasets were preprocessed to 
address missing values and outliers and to be 
normalized for further analysis. The investigation 
proposed and employed the ECO-RLR model 
designed to synthesize this multimedia data and 
evaluate public health risks across various urban 
landscapes by considering different pollution 
levels. The proposed ECO-RLR model 
demonstrated strong performance in estimating 
health risks comparing to existing traditional 
models with evaluation parameters of MAE, 
RMSE, and R², confirming its reliability. 
Additionally, the model incorporated crucial 
health risk indices including IAQI, TCI, and NPI to 
further validate its effectiveness in assessing 
health risks in different urban environments. 
Urban space limits, the difficulty of harmonizing 
social, environmental and economic variables, 
the difficulty of quantifying long-term health 
consequences, and the lack of financing for 
comprehensive ecological infrastructure are 
some of the limitations. Further research and 
development could be focused on whether using 
real-time environmental data or incorporating 
deep learning models to improve health risk 
assessment. However, to enhance and 
strengthen the current and similar urban health 
assessments, more complex and diverse urban 
contexts should be included, and socioeconomic 
characteristics need to be examined. 
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