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Water scarcity is an important issue in current agricultural development. Reasonably utilizing water resources and 
improving local agricultural economic benefits is an important issue. This study proposed a water resource 
allocation model based on multi-objective optimization to address the poor agricultural water resource allocation 
and unreasonable crop planting structure. The model took the simplex aggregation algorithm to optimize water 
resource allocation and added the simplex aggregation backtracking algorithm to adjust the carbon footprint 
backtracking of planting structure. The results showed that, after using the water resource optimization model 
among 13 regions of testing area, the planting area in region 1 decreased by 0.30 × 105 m3, while region 6 increased 
the cotton planting area. The total volume of crop trade in the region increased by 0.59 × 108 m3. After optimizing 
the carbon emission model, the carbon emission decreased by 0.5 × 109 kg and the economic trade volume 
increased by ¥2 × 109 CNY. After model optimization, the local planting area and water resource allocation had 
been effectively managed, improving the economic and trade capacity of the region and reducing carbon 
emissions. This study had important guiding significance for future water resource allocation and agricultural 
structure adjustment. 
 
 
Keywords: water resources; economic performance; planting structure; multi-objective optimization; planting area. 
 
*Corresponding author: Meijian Yu, Shandong Research Center on Town Development, Yantai Institute of Science and Technology, Yantai 265600, 
Shandong, China. Email: yumeijian1980@126.com.  

 

 

 

Introduction 
 
Water scarcity has become a major resource 
issue worldwide, especially in agricultural 
production. The utilization and rational allocation 
of water resources are crucial for sustainable 
agricultural development [1]. With the current 
population growth and economic development, 
the demand for agricultural products continues 
to increase, making water scarcity a major issue 
in current social development [2]. Reasonable 
allocating water resources and optimizing 
agricultural planting structure under limited 

water resources conditions have become an 
important direction for current agricultural 
production and development [3]. Multi-objective 
optimization model is an effective mathematical 
tool, which can provide the best resource 
allocation plan based on considering multiple 
factors and objectives. By establishing a multi-
objective optimization model, multiple 
objectives such as economic benefits, resource 
utilization efficiency, and environmental 
protection can be considered simultaneously, 
seeking a balance point among these objectives 
to allocate water resources reasonably and 
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optimize agricultural planting structure 
adjustment [4].  
 
In most studies, multi-objective models have 
been widely applied in multiple fields. Sawik et al. 
proposed a multi-objective optimization 
conceptual model and introduced practical 
methods to optimize spatial task planning. The 
results indicated that the model could effectively 
balance risk, sustainability, and supply chain 
objectives, reduce task risk through systematic 
decision-making methods, improve resource 
utilization efficiency, and meet environmental 
sustainability requirements [5]. Seyednouri et al. 
proposed a multi-objective optimization model 
to optimize the multi-energy and multi-
microgrids, which included cost and profit 
analysis. The results indicated that the new 
model based on Mixed-Integer Linear 
Programming (MILP) scene reduction and ɛ-
Constraint Mixed-Integer Nonlinear 
Programming (MINLP) effectively solved 
uncertainty and obtained a Pareto optimal 
solution set for cost-profit equilibrium [6]. Zhang 
et al. developed a multi-objective fast 
optimization method to optimize Solid Fuel 
Ramjet (SFRJ) engines, which combined non-
uniform rational B-splines, Levy motion gradient 
descent, and support vector regression. The 
results showed that the new method predicted 
quickly and had low errors, significantly reducing 
Total Pressure Loss (TPL) through multi-objective 
optimization while maintaining thrust [7]. Sun et 
al. proposed a multi-objective optimization 
technique for underground logistics systems 
based on subways to alleviate urban congestion, 
which constructed an entropy fuzzy technique 
for order preference by similarity to an ideal 
solution (TOPSIS) evaluation model and a mixed 
integer programming model and combined with 
Particle Swarm Optimization (PSO) and A* 
algorithm to optimize Logistics Network Planning 
(LNR) decisions. The results showed that the 
method could efficiently plan M-ULS networks 
and provide economically feasible and 
environmentally friendly Pareto optimal 
solutions [8]. Multi-objective optimization 
models can effectively improve practical 

performance in various fields. Currently, some 
researchers have conducted research focusing on 
the allocation and management of agricultural 
water resources. Ouyang et al. developed a 
research framework consisting of functional 
analysis, international review, policy evolution 
evaluation, and successful factor exploration to 
evaluate the effectiveness of China's water 
resource tax policy pilot and found that water 
resource tax improved water use efficiency, 
optimized water use structure, and helped 
promote rational water policies and governance 
decisions [9]. Martínez-Valderrama et al. 
proposed a new analysis gap mechanism and 
solution to address the widening gap between 
agricultural water use and water resource supply 
and found that combining the eight action lines 
and implementing comprehensive water 
resources management could address the severe 
challenges of widespread water scarcity in the 
future [10]. Ma et al. proposed a comprehensive 
evaluation method combining crop model and 
CGE model to compensate for the impact of 
climate change on agriculture and found that 
climate change might lead to a reduction in the 
area of food cultivation in ecologically fragile 
regions, an increase in cash crops, and 
intensifying challenges to food security [11]. 
 
Although multi-objective models can effectively 
improve the data solving and rational allocation 
of target problems, there are still significant 
practical issues that need to be addressed in 
water resource management and planting 
structure adjustment to improve management 
efficiency and economic benefits. This research 
innovatively used multi-objective algorithms to 
adjust and analyze water resource management 
and crop planting structure by introducing a 
simplex aggregation algorithm based on multi-
objective model to enhance the water resource 
data management capability and water resource 
data processing efficiency in water resource 
management and allocation. Further, a simplex 
aggregation backtracking algorithm was added to 
the multi-objective model to enhance its 
backtracking and data analysis capabilities for the 
adjustment of planting structure. 
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Materials and methods 
 
Analysis of agricultural water resources and 
crop carbon footprints 
In agriculture, water footprint analysis usually 
adopts a “top-down” or “bottom-up” approach 
to water allocation. The “top-down” approach 
can analyze and allocate multiple different 
industries and regions in agriculture, which is 
simple to account for water resources. However, 
this method cannot provide better 
recommendations for water resource 
management and allocation. The “bottom-up” 
approach can clarify the current allocation of 
water resources in different regions and provide 
better recommendations. This study used a 
"bottom-up" approach to water management to 
analyze agricultural water resources [12]. 
Agricultural water resource analysis requires 
analyzing the water resource usage of different 
crops that absorb both surface water and 
groundwater when utilizing water resources. 
Surface water mainly comes from two sources 
including rainfall and irrigation. Meanwhile, 
crops also release some water resources into the 
atmosphere through their leaves due to 
transpiration and then return to the surface 
through rainfall. During this process, when the 
surface water resources are insufficient, the 
crops absorb groundwater. Therefore, when 
analyzing crop water resources, the transpiration 
and water use efficiency of crops were 
thoroughly analyzed. The crop water demand 
was calculated as follows [13]. 

 

1

10* [min( , )]
cgp

c e

m

GWR ET P
=

=          (1) 

 
where GWR was the crop water demand, which 
was the amount of water resources absorbed by 
crops from the ground. Pe was the rainfall. ETc 
was the amount of water evaporated by crops 
through transpiration. cgp was the growth cycle 
of crops. m was the month of crop growth. The 
crop transpiration was shown in equation (2). 
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when P was greater than the critical value of 83.3, 
the rainfall calculation at this time was P × (125 – 
0.6 × P)/125. When P was less than the critical 
value, the rainfall at this time was 41.7 + 0.1 × P. 
The transpiration rate of crops was then 
determined as below [14]. 
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where Kc was the crop coefficient.   was the 
slope of saturated vapor pressure. Rn was the net 
radiation level of crops. G was the soil heat flux 
density of crops. 𝛾  was the ventilation 
coefficient. U2 was the wind speed at a height of 
2 meters. 𝑒𝑠 was the saturated vapor pressure of 
crops. 𝑒𝑎  was the actual vapor pressure of the 
crop. T was the air temperature. The water 
requirements of different crops in different 
regions may vary. Therefore, water resources 
need to be allocated according to the growth and 
development of crops and irrigation needs. The 
requirement of crop irrigation water was 
calculated as follows [15]. 
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where B was the surface water irrigation demand 
of crops. The unit water demand of crops in the 
region was shown in equation (5). 
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where GWF was the groundwater demand 
footprint of crops. S was the unit yield area of 
crops. BWF was the footprint of crop irrigation 
water demand. Crop carbon footprint analysis is 
an important method for analyzing the planting 
situation and structure of crops. The changes in 
crop carbon footprint can reflect the changes in 
crop resources and adjust the planting structure 
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reasonably through resource changes. The 
systematic quantitative evaluation was used to 
analyze the carbon components of crops. When 
analyzing the carbon footprint of crops, there are 
several major pathways of change including 
production and processing, irrigation, 
fertilization, farmland, crop burning, crop roots, 
and other carbon cycle patterns. In carbon 
footprint analysis, the boundary of carbon cycling 
in crop systems was first determined. Then, data 
on crop carbon cycling processes was collected to 
calculate changes in crop carbon footprint before 
the final evaluation and analysis of the crops. The 
crop carbon footprint boundary was determined 
by analyzing crop carbon footprint changes and 
collecting crop data through boundary 
determination. Due to the varying yields and 
carbon footprint changes of different crops, this 
study processed and analyzed crop data through 
models. 
 
Construction of multi-objective optimization 
model for crop resource optimization 
Due to the wide variety of crops in actual 
production and differences in regional and 
resource allocation, a multi-objective 
optimization model was used to analyze the 
water resources and carbon footprint of crops, 
which was established with the goals of actual 
crop economic benefits and water resource 
conservation. The economic and trade objective 
function was shown in equation (6) [16]. 
 

1

1 1 1 1

max [( * )* ] [(min( * , )* ]
p q p q

j ij j j j ij j j

j i j i

F Y x M UP Y x M OP
= = = =

= − +    (6) 

 
where F1 was the economic benefits of the crop. 
Yij was the total production of crop j in water 
resource area i. xij was the resource allocation of 
crop j in water resource area i. Mj was the 
minimum demand for crop j in local production. 
UPj and OPj were the export and import prices of 
crop j in the current region, respectively. The 
water resource utilization of crops in the current 
region was shown in equation (7) [17]. 
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where F2 was the water resource demand of 
crops in the current region. Bij was the demand 
for surface irrigation water resources for crop j in 
water resource area i. The model needed to 
constrain different resource conditions when 
allocating resources. The water resource 
constraint condition was shown in equation (8). 
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where 𝐻𝑖
𝑎𝑙𝑙  was a constant representing the total 

demand for land resources. The land constraint 
condition was shown in equation (9) [18]. 
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where 𝜂𝑖  was the water resource conversion 
efficiency in region i. V was the water resource 
threshold in region i. The multi-objective 
optimization model required control variables to 
constrain water resource objective function of 
the current region when analyzing water 
resource allocation to maximize local economic 
trade and minimize water resource consumption. 
In addition, constraints were imposed on the 
local water and land resources. Further, the 
objective function and constraints were used to 
achieve the maximum objective constraints of 
the model. However, during the resource 
constraint process, the model was prone to 
dimensional disasters due to dimensional 
changes. Therefore, the simplex aggregation 
algorithm was added to transform different crop 
objectives into a single objective at different 
stages, which reduced the dimensionality and 
enhanced the data processing capability of the 
model. Based on this algorithm, the model first 
converted multiple target aggregate models into 
a series of constrained target sub-models. Then, 
a series of constrained objective sub-models 
were converted into a single objective model 
based on the constraints of different objectives. 
The single objective model was then analyzed 
and   solved   using   a   geometric  algorithm.   The 
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Figure 1. Multi-objective model crop planting structure adjustment model. 

 
 
obtained single-objective solutions were planned 
and aggregated. The optimal solution in the 
current sequence was finally selected from the 
aggregated data. Meanwhile, the model selected 
a priority point after obtaining the optimal 
solution and analyzed it through multi-objective 
decision-making to obtain the most efficient 
point. The current most effective point was the 
optimal point after optimization. The changes in 
crop planting structure were analyzed through 
the changes in crop carbon footprint distribution. 
In the distribution of crop carbon footprint, with 
the low-carbon situation of crops as the target, 
the annual emissions of crop carbon changes in 
the current region were determined as the 
target. The low-carbon objective function was 
obtained as follows [19]. 

 

3

1 1

min ( * )* ( )
p q

j j ij

j i

F C Y x
= =

=        (10) 

 
where F3 was the carbon index objective 
function. Cj was the carbon footprint of crop j. 
The objective function was agricultural 
production competition under low-carbon 
conditions as shown in equation (11) [20]. 
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where 𝐹3
′  was the agricultural competitiveness 

under low-carbon conditions. 𝐸𝑖  was the 
agricultural water revenue in region 𝑖 . The less 
competitive agriculture is, the more competitive 
it is with similar constraint situation in the model. 
Unlike the previous model that adjusting the 
carbon footprint and planting structure of crops 
was a large-scale data optimization process, this 
study used a simplex aggregation backtracking 
algorithm for multi-objective problem analysis, 
which transformed a large-scale multi-objective 
optimization problem into a single process multi-
stage optimization problem (Figure 1). In the 
carbon footprint and crop planting structure, the 
multi-objective optimization model of carbon 
footprint was the same as the water resource 
optimization model. The carbon footprint 
process of crops was first transformed into a 
single sub-objective through the model. The 
target model was constrained and then 
aggregated to compute a single solution between 
sub-single targets. However, unlike the multi-
objective model for water resources, the multi-
objective model for carbon footprint calculated 
the  optimal  solution  for  crop planting structure. 
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Figure 2. Comparison of optimal points between two models. 

 
 

The 𝑥𝑖𝑗  value was then changed to fully solve the 

entire process, and new solution values were 
obtained again. Ultimately, the optimal solution 
for crop planting structure was completed. 
 
Validation of multi-objective optimization 
model 
The data from the planting areas of rice, wheat, 
corn, and cotton in 13 districts and counties 
(designated as regions 1 to 13) of Henan 
Province, China were employed to validate the 
proposed model. The data collection period was 
from January 2023 to July 2023. The practical 
application of two different structural allocation 
models were explored. The multi-objective 
model for water resources was analyzed and 
optimized using MATLAB (MathWorks, Natick, 
MA, USA). The computational hardware was Intel 
Core i7 with 4 cores, NVIDIA GPU, 32 GB RAM, 
512 GB SSD hard drive, and Windows 10 system. 
The weight size of the model was set based on 
the actual multiple runs with weight sizes of 0.79 
and 0.21, respectively. The impact of multi-
objective modeling-based water allocation on 
crop planting area was analyzed.  
 
Statistical analysis 
The one-way ANOVA was performed with inter 
regional water resource benefits (¥/m³) as the 
dependent variable and crop type as the 
independent variable. 

Results and discussion 
 

Resource allocation of multi-objective model for 
water resources 
Different water resource implementation plans 
were analyzed based on the current economic 
and trade goals and water resource usage goals 
of the selected area. The minimum agricultural 
water consumption was 65 × 108 m3, and the 
minimum agricultural economic and trade 
benefit (F1) was ¥30 × 108 (CNY). The maximum 
agricultural water consumption (F2) was 110 × 
108 m³, and the maximum agricultural economic 
and trade benefit (F1) was ¥800 × 108. If there 
were more F2, F1 would be even larger. The 
research compared the changes in the most 
effective point between the linear optimization 
model and the multi-objective model to 
determine the optimal situation of the current 
model. The results demonstrated that, when 
using the multi-objective algorithm for 
calculation, the optimal logF1 value of the multi-
objective model was 10.03, which was closer to 
the actual optimal logF1 value of 10.025 with a 
difference of 0.005 between the two points. The 
logF2 value of the multi-objective optimization 
model was 10.03, while the actual optimal point 
was 10.06, which had a difference of 0.03 
between the two points (Figure 2a). Further, the 
logF1 value of the linear optimization model was 
10.006,  which  differed  from  the actual point by  
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Figure 3. Changes in planting areas in different regions before and after optimization. 

 
 
Table 1. Comparison of water resource trade before and after optimization. 
 

Crop/minimum requirement 

Total output 
(×104 t) 

Irrigation water volume  
(×106 m3) 

Water resource trade volume  
(×108 m3) 

Before  After  Before  After  Before  After 

Rice/1,251.15 1,161.258 1,251.15 3,215.84 3,184.74 +2.64 0 

Corn/257.35    234.510    257.35    201.54    246.18 +0.18 0 

Wheat/47.18      94.350      87.54    274.65    246.24 -1.54 -0.95 

Cotton/9.66      16.540        9.66    252.31    143.05 -2.06 0 

Total - - 3,944.34 3,820.21 -0.78 -0.95 

 
 
0.019, while the logF2 value was 10.05 with the 
difference from the actual point by 0.01 (Figure 
2b). The results confirmed that multi-objective 
optimization model was closer to the actual 
water resource optimization situation, indicating 
that using the multi-objective optimization 
model could better optimize the regional water 
resource allocation. After regional optimization, 
the model showed some changes in planting 
areas in certain regions. The cotton planting area 
in region 1 decreased from 1.20 × 105 m3 before 
optimization to 0.90 × 105 m3 after optimization 
with the planting area decreased after 
optimization by 0.30 × 105 m3. Meanwhile, the 
rice planting area was reduced in region 5 with 
the planting area decreased from 3.00 × 105 m3 
to 2.80 × 105 m3, resulting in an overall decrease 
of 0.20 × 105 m3. In region 6, the cotton planting 
area increased by 2.00 × 105 m3. The wheat 
planting area in region 11 increased by 1.30 × 105 
m3. The planting area of rice, wheat, and corn 
also reduced in region 12 (Figure 3). These 

increased areas might be due to some crops not 
being able to be planted well in the current 
region based on water resource allocation. 
Meanwhile, the crops that were conducive to 
planting had been mobilized and allocated. The 
optimization model could effectively allocate 
water resources in the current region and 
enhance the water resource utilization efficiency. 
To investigate the actual trade situation of water 
resources utilization in the optimized model, the 
water resources trade situation in the area 
before and after optimization was compared 
with positive trade volume indicating imports 
and negative trade volume indicating exports. In 
practical applications, optimizing water resource 
allocation can ensure regional grain planting and 
regional water resource utilization, increase grain 
production, and promote actual economic trade 
in grain. The results showed that, when using the 
multi-objective model for water resource 
optimization, the actual grain trade of all four 
crops   increased   after   optimization   (Table  1). 
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Figure 4. Economic and trade changes before and after optimization. 

 
 
After optimization, the planting and trade 
volume of rice, wheat, and cotton achieved self-
sufficiency. The trade volume of corn increased 
by 0.59 × 108 m3 after optimizing water 
resources, which might be due to optimized 
water resource allocation increasing crop 
cultivation. The results indicated that optimizing 
water resources could achieve economic growth 
of certain crops in different regions and also 
improve regional water resource utilization 
efficiency.  
 
Analysis of multi-objective model planting 
structure adjustment results 
The changes in planting structure and carbon 
footprint in the area were analyzed based on the 
results of the water resource allocation situation. 
The water efficiency of different regions in Henan 
Province, China was compared, and the water 
efficiency reflected the cost of water resources in 
that region. The results showed that regions 1 to 
13 had a water yield of 25.51, 22.54, 17.32, 21.28, 
18.15, 21.98, 20.15, 16.84, 16.88, 17.02, 16.12, 
17.25, 16.45 ¥/m³, respectively. There were 
differences in water resource benefits in 
different regions. Some regions had significant 
differences in overall regional water resource 
benefits based on the size of planting area and 
water demand. The maximum water resource 
benefit in region 1 was 25.51 ¥/m³, while the 

minimum water resource benefit in region 11 
was 16.12 ¥/m³, which might be due to the high 
demand for water resources or the growing of 
crops in region 1, resulting in higher water 
resource cost. The economic and trade changes 
of the province before and after optimizing the 
multi-objective model under low-carbon 
conditions were compared, and the results 
demonstrated that, from the carbon emissions 
and economic and trade changes, the actual 
carbon emission was 19.2 × 109 kg, while the 
optimized carbon emission was 18.7 × 109 kg. 
After optimization, the carbon emission 
decreased by 0.5 × 109 kg, which might be an 
optimized planting structure adjustment to 
reduce carbon emissions. The economic and 
trade volume before optimization was ¥102 × 
109. After optimization, it reached ¥104 × 109 
with an increase of ¥2 × 109 in economic and 
trade volume (Figure 4a). This result might be 
because the model adjusted the structure of crop 
cultivation. The carbon competitiveness before 
optimization reached 0.055, while the optimized 
carbon competitiveness was only 0.053 with a 
decrease of 0.02. The economic and trade 
volume before optimization was only ¥100 × 109, 
while the optimized economic and trade volume 
reached ¥105 × 109 with a trade volume growth 
of ¥5 × 109 (Figure 4b). The results indicated that 
the   multi-objective   optimization   model   could 
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Figure 5. Changes in planting area before and after carbon footprint optimization. 

 
 
promote agricultural economic and trade growth 
while reducing regional carbon emissions. To 
analyze the planting structure after multi-
objective optimization of carbon footprint, a 
comparative analysis was conducted on the 
planting areas of 13 regions before and after 
optimization. The results showed that there were 
changes in the planting area and crop types in 
some areas optimized through carbon footprint 
optimization. In region 1, the corn planting area 
decreased from 3.00 × 105 m3 to 2.29 × 105 m3, 
while the rice planting area increased from 6.00 
× 105 m3 to 6.20 × 105 m3, which might be because 
in the carbon footprint analysis of the region, rice 
cultivation was more suitable for regional carbon 
cycling. Meanwhile, some crops were planted in 
certain areas. Regions 6, 11, and 12 respectively 
increased their planting areas for wheat, corn, 
and cotton, which might be because these crops 
were more suitable for regional carbon footprint 
changes in the carbon cycle and carbon emissions 
of the region (Figure 5). The multi-objective 
optimization model for carbon footprint could 
analyze the carbon footprint of different regions 

and adjust the planting structure, which not only 
coordinated the local agricultural economy, but 
also reduced regional carbon emissions.  
 
The crop economic and trade changes before and 
after optimization demonstrated that, except for 
cotton, the other three crops increased, while 
the cotton decreased by about 0.40 × 108 m3. 
Carbon emissions decreased from 175.95 × 108 kg 
to 168.94 × 108 kg with an overall decrease of 
7.01 × 108 kg (Table 2). The multi-objective 
optimization model for carbon footprint could 
effectively reduce regional carbon emissions and 
improve economic and trade conditions, which 
had good effects on the local economic 
development and crop cultivation adjustment. 
After optimization, the planting area of rice in 
region 5 decreased from 3.00 × 105 to 2.80 × 105 
m³, while it increased from 6.00 × 105 to 6.20 × 
105 m³ in region 1. The overall average change in 
planting area was -0.15 × 105 ± 0.23 m³. The 
planting area of wheat in region 11 significantly 
increased by 1.30 × 105 m³, while it decreased in 
region 12  with  an  average  change amplitude of  
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Table 2. Changes in crop economic trade before and after carbon footprint optimization. 
 

Crop/minimu
m requirement 

Total output 
(×104 t) 

Irrigation water volume 
(×106 m3) 

Water resource trade volume 
(×108 m3) 

Carbon emission 
(×108 kg) 

Before After Before After Before After Before After 

Rice/1,251.15 1,161.258 1,251.15 3,215.84 3,248.65 2.64 1.54 73.54 69.58 
Corn/257.35    234.510    257.35    201.54    251.26 0.18 -0.16 21.62 18.65 
Wheat/47.18      94.350      87.54    274.65    257.64 -1.54 -2.68 9.45 10.35 
Cotton/9.66      16.540      69.54    252.31    153.19 -2.06 -1.66 71.35 70.36 
Total - - 3,944.34 3,910.74 -0.78 -2.96 175.96 168.94 

 
 
0.45 × 105 ± 0.61 m³. The corn planting area in 
region 1 decreased from 3.00 × 105 to 2.29 × 105 
m³, while it increased in regions 6 and 11 with the 
average change amplitude of -0.12 × 105 ± 0.35 
m³. In region 1, cotton plating area decreased by 
-0.30 × 105 m³, while it in region 6 increased 
significantly by 2.00 × 105 m³ with the average 
change amplitude as 0.85 × 105 ± 1.02 m³. After 
optimization, the total water trade volume 
increased by ¥2 × 109. The total carbon emissions 
in the area dropped by 7.01 × 108 kg from 175.95 
× 108 kg before optimization to 168.94 × 108 kg 
after optimization with an average reduction of 
12.5% in carbon emissions per hectare. 
 
Different crops showed significant impacts on 
water resource efficiency (F = 6.32, P < 0.01). 
Cotton had the highest water resource efficiency 
with the average of ¥22.8/m³, while corn had the 
lowest one with the average of ¥17.2/m³. There 
was a significant difference among regions (F = 
4.15, P < 0.05) with region 1 (¥25.51/m³) 
significantly higher than the other regions 
(average ¥18.6/m³). The results of planting area 
and carbon emissions showed that rice planting 
area was significantly positively correlated with 
carbon emissions (r = 0.72, P < 0.01), while cotton 
planting area was negatively correlated with 
carbon emissions (r = -0.58, P < 0.05). Water 
resource benefits were strongly positively 
correlated with economic trade volume (r = 0.85, 
P < 0.001), indicating that efficient water use 
could significantly improve economic benefits. In 
terms of water trade volume, the rice trade 
volume decreased by 2.64 × 108 m3, while the 
wheat trade volume increased by 0.59 × 108 m3. 
In terms of carbon footprint optimization, the 
optimized carbon emission was significantly 

reduced by 0.5 × 109 kg from 19.2 × 109 kg to 18.7 
× 109 kg, while the economic trade volume 
changed from ¥102 × 109 to ¥104 × 109 with an 
increase of ¥2 × 109. In addition, the carbon 
competitiveness also decreased after 
optimization from 0.055 to 0.053, which 
indicated that optimizing the model promoted 
economic and trade development while reducing 
carbon emissions.  
 
Overall, the multi-objective optimization model 
achieved better results in both water resource 
optimization and carbon footprint optimization, 
which could effectively improve the rational 
deployment of local water resources and planting 
structure, reduce planting costs, and improve 
planting efficiency. This research mainly focused 
on insufficient water resource management and 
utilization in different regions, which led to a 
decrease in regional economic crop yields and an 
increase in regional carbon emissions. A water 
resource allocation model based on multi-
objective optimization was proposed, which 
combined different algorithm structures to 
improve the efficiency of water resource 
management and carbon footprint data analysis 
and processing. The results revealed that the 
optimal solution obtained after applying the 
water resources optimization model was close to 
the theoretical optimum. Overall, due to model 
optimization, the total trade of crops in the 
region increased by 0.59 × 108 m3. There were 
differences in water resource benefits among 
different regions with region 1 showing the most 
significant benefits. The comparative analysis of 
carbon footprint optimization models showed 
that the planting area in region 1 decreased after 
optimization, while the rice planting area 
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increased, which indicated that the planting area 
and structure of several regions were more 
reasonable after adjustment. Taken together, the 
model optimization reduced carbon emissions by 
7.01 × 108 kg and achieved an increase in trade 
volume, proving the effectiveness of the multi-
objective optimization model in rationally 
allocating local water resources and planting 
structure, and reducing planting costs and 
improving planting efficiency. Although some 
achievements have been made in this research, 
there are still some shortcomings, which include 
that the research only analyzed the spatial water 
resources and planting structure. Further 
analysis of temporal structure is needed. 
Meanwhile, future research also needs to 
analyze specific crops grown in specific regions to 
improve the adaptability of the model. 
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