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The spatiotemporal development of landscape patterns is the most obvious indicator of changes in land use and 
land cover and has significant implications for managing land use and optimizing regional landscape patterns. This 
research used middle reaches of the Yellow River in Shaanxi, China to construct the land use dataset based on 
thematic mapper (TM), enhanced thematic mapper plus (ETM+), and operational land imager (OLI) remote sensing 
images of 2014, 2017, 2020, and 2023 to construct a multi-layer perceptron network based on spatio temporal 
landscape ecological random forest (MLP-STLERF) to capture land use and land cover changes over time. The 
results showed that the area of cultivated land, urban land, other construction land, and rural residential land 
increased between 2014 and 2024, while the area of water, forest land, and grassland decreased during the 
previous ten years. Land use/land cover (LULC) was changed dramatically because of human activity, while 
landscape patterns and the eco-environment were also impacted. By combining the elements of each 
management zone's various ecological risk levels, the core zone, buffer zone, and experimental zone were defined 
to represent the ecological risk ranging from low to high. From 1986 to 2008, the ecological risk tended to be 
concentrated in one area, while, from 2014 to 2024, it marginally increased. The primary landscape types in 
Shaanxi were landscape level, forest land, green land, water land cultivated land, urban land, rural residential 
land, and unused land, which made up over 94% of the total area. Arable land and unused land were trending 
downward, while grassland and forest land were trending upward, and the percentage of construction land 
increased over the past ten years due to the rapid economic development. When compared to other current 
models, MLP-STLERF showed the best accuracy of 90.8% with a maximum accuracy of 98.2%. The proposed 
method outperformed root mean squared error (RMSE) in terms of minimizing absolute errors, while mean 
absolute error (MAE) was highly effective in explaining the spatial variations in landscape pattern change. The 
study offered a reference for optimizing landscape patterns in comparable geomorphic environments and allowed 
for a dynamic knowledge of the evolution of landscape patterns in typical hilly areas of northwest China. 
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Introduction 
 
Land gives species the food and energy they 
need, and managing it is essential to preserving 

the environment and enhancing the quality of 
life. One of the most significant elements 
influencing ecosystem services and human well-
being globally is the development of landscape 
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patterns brought by land use and land cover 
changes (LULCs). The natural environment is 
under a lot of strain due to high-intensity land use 
and quick land-use changes by global 
socioeconomic growth [1]. Since ecological 
catastrophe and natural disasters brought on by 
the irresponsible use of natural resources directly 
affect national security, sustainable 
development, economic competitiveness, and 
regional landscape patterns, governments 
throughout the world have placed a great deal of 
emphasis on achieving ecological security [2]. 
The study of landscape units' type composition, 
spatial arrangement, and interactions with 
ecological processes is the focus of the broad 
field of landscape ecology. In addition to offering 
theoretical support and helpful advice for 
resolving several ecological and environmental 
issues that people confront, it aims to 
comprehend the stability and variety of 
ecosystems, biodiversity protection, land use 
planning, resource management, and ecological 
restoration [3]. 
 
The study of landscape patterns provides a 
tangible representation of landscape variation. 
The study demonstrated that human activity had 
an impact on aspect development and changes in 
addition to being directly linked to ecological 
processes such as soil nutrients, soil erosion, 
biodiversity, and soil moisture [4]. Landscape 
index analysis is one of the most popular 
techniques for analyzing landscape patterns. ML 
technology has been used in landscape pattern 
study, and geospatial information technologies 
like GIS and RS have become standard procedure 
used to obtain spatial data on landscape metrics 
[5]. A previous study examined spatiotemporal 
variations in landscape pattern and structure in 
the Greater Bay Area, China using remote sensing 
data from 1980 to 2020 and found the landscape 
pattern indices and the cities in that area having 
significant variations and diversities. However, 
the diffusion and coalescence processes in each 
city followed distinct patterns, and the landscape 
pattern and structural complexity increased 
gradually due to anthropogenic modifications [6]. 
To build and maximize the landscape pattern, Li 

et al. proposed a novel approach to assess the 
ecological hazards using the minimal cumulative 
resistance model (SPCA-RDA) and found that 
integrated ecological risk was greatly influenced 
by human social and landscape pattern variables 
with a low overall risk zone [7]. Previous research 
suggested that the ecological risk of the 
landscape was manageable, although the 
amount of agricultural land was declining and the 
amount of development land was growing. The 
study recommended building ecological shelters 
and making the most of available land [8]. 
Another study assessed landscape ecological risk 
(LER) and ecosystem service value (ESV) in China 
between 2000 and 2015 and found a rise in ESV 
and a fall in the LER index with plain regions 
primarily exhibiting high-LER, which affected 
sustainable development and ecological security 
[9]. An increase in vegetation area and fragment 
percentage was reported in a forest fragments 
analysis in a southern Brazil conservation unit 
from 1998 to 2018, while the edge density stayed 
low, suggesting less conservation. The results 
were essential for management plans and further 
study [10]. Wang et al. reported significant 
changes in land use and land cover by assessing 
landscape ecological risk from 1986 to 2015 [11], 
while Yan et al. looked at landscape ecological 
risk in the Three Gorges Reservoir Area from 
1990 to 2020 and found that there had been a 
tendency toward more forest and building area 
and less agricultural land with precipitation, 
yearly average temperature, population density, 
and human influence as the primary motivators 
[12]. Abolmaali et al. investigated the connection 
between landscape patterns and habitat quality 
(HQ) in the watershed area surrounding 
Zayanderud Dam and discovered a downward 
trend in HQ with lower-quality habitats observed. 
The study emphasized how biodiversity was 
affected by landscape patterns and affected and 
supported efficient conservation and landscape 
management decision-making [13]. 
Understanding the level of ecological risks (ERs) 
may enhance sustainable development and the 
ecological environment. Scale transition was 
sensitive and looked at ER levels. Li et al. found 
that land-use intensity and degree were the 
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primary barriers, whereas altitude and slope 
showed negative associations with ER [14]. The 
Chinese government has developed several 
conservation programs to address the conflict 
between human survival and development and 
the preservation of the environment and ecology 
in nature reserves [15]. Wang et al. reported that 
ecological restoration improved the ecosystem's 
worth, and conservation efforts and the creation 
of nature reserve networks might both support 
the enhancement of regional ecosystems [16].  
 
To understand the effects of LULCs, a 
quantitative analysis of the changes in landscape 
patterns and the factors that influence them is 
thought to be essential. The significance of 
spatiotemporal scales is being emphasized more 
and more in research on the evolution of 
landscape patterns. Global, national, provincial, 
county, and township scales are among the 
administrative scales that have been the primary 
focus of research in recent years [17]. However, 
a few studies choose to employ landscape 
categories as the research boundaries including 
grasslands, wetlands, agricultural regions, and 
watersheds. Additionally, the pertinent 
quantitative research methodologies have 
expanded. Numerous studies have been 
conducted on land use prediction models, 
landscape metrics, geographical correlation, and 
the use of land suitability evaluation methods 
[18]. The analysis of landscape patterns' 
diversity, vulnerability, and structure has been 
the focus of research, and some studies have 
examined the causes and potential future 
changes in landscape pattern evolution using 
socioeconomic and natural factors like 
population, industry, vegetation, and terrain 
[19]. LULC change-based landscape machine 
learning approach is currently being used 
extensively to assess the effects of several risk 
variables in a region in a comprehensive manner 
and define how human disturbance or natural 
changes affect the landscape constitutions, 
structures, functions, and processes of a 
particular region [20]. This approach examined 
the impact of ecological hazards on the region's 
entire landscape in addition to the degree of 

damage to specific risk receptors. By combining 
geographical and ecological processes, the multi-
layer perceptron (MLP) approach gives more 
consideration to the temporal and spatial 
variability of ecological hazards within a given 
area. The use of geographic information systems 
(GIS), remote sensing (RS), and multitemporal 
products can provide important information on 
landscape fragmentation mechanisms.  
 
This research proposed a novel multi-layer 
perceptron network based on spatio temporal 
landscape ecological random forest (MLP-
STLERF) model using GIS, RS, and multitemporal 
products to uncover localized spatial clustering of 
ecological risk in Shaanxi, China by quantifying 
the spatio-temporal changes in LULC and 
analyzing landscape patterns from 2014 to 2024 
and highlighted how urban-rural transitional 
zones having evolved into new ecological risk 
hotspots, providing actionable insights for 
spatially targeted land-use planning and 
conservation policy. This study improved 
knowledge of the local ecological situation and 
measures, enhanced the accuracy of ecological 
landscape patterns, and created an integrated 
ecological pressure index. The results of this 
research would improve the precision of future 
forecasts and LULC change detection, facilitate in 
identifying environmental hazards and 
degradation trends by analyzing the effects of 
LULC changes on biodiversity, water resources, 
soil quality, carbon storage, and offer suggestions 
for sustainable land use planning, conservation 
tactics, and urban development by tying LULC 
findings to policy consequences. 
 
 

Materials and methods 
 
Study location and data sources 
Located in the middle reaches of the Yellow 
River, Shaanxi is one of the most economically 
active and densely populated areas of northwest 
China with a very fragile ecological environment 
and significant soil erosion. With a total area of 
around 20.56 × 104 km2, Shaanxi is also the 
location of the biggest and most characteristic 
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Loess Plateau in the world [21]. The terrain is high 
in the north and south and flat in the center. It is 
made up of a variety of geographical types 
including plains, mountains, plateaus, and basins, 
while the Loess Plateau makes up about 40% of 
the entire area. The region straddles the Yangtze 
and Yellow Rivers, has three distinct climate 
zones and 61 forest nature reserves, accounting 
for 5.6% of the total area, covering an area of 
11.46 × 104 km². The area has numerous 
ecological reserves including wind and sand 
fixation, soil and water conservation, and is the 
primary area for the ecological protection project 
in the Yellow River Basin and the Three-North 
Shelterbelt Program [22]. The study areas were 
divided into experimental zone primarily where 
the highest and most dangerous risks were 
found, the buffer zone with the biggest reduction 
in ecological risk, and the core zone covered by 
the lowest and lowest danger. The data of 
administrative boundary, land use in 2014, 2018, 
2020, 2024 with 30 m resolution, and digital 
elevation model (DEM) with Shuttle Radar 
Topography Mission (SRTM) digital elevation 
data in Geospatial Raster Data (GRID) format with 
30 m resolution were acquired from China Land 
Use/Cover Dataset (CLCD) (China Academy of 
Sciences) (https://www.resdc.cn/).  
 
Data preprocessing 
Land sat Thematic Mapper (TM), Enhanced 
Thematic Mapper Plus (ETM+), and Operational 
Linescan System (OLS) remote sensing images 
were used to generate the land use dataset. 
When paired with an interpretation approach of 
human-computer interaction, the classification 
accuracy was confirmed in the field to be greater 
than 90.3%. The land use data was separated into 
25 second-level land classes and six first-level 
land classes based on the use and natural 
characteristics of the land resources. The 
marshes were designated as wetland/water 
bodies in accordance with the requirements of 
the habitat quality research, whereas the other 
sandy land, Gobi, saline-alkali land, bare land, 
and bare rock land were designated as unused 
land. The spatiotemporal variation features of 
the ecological risk analysis of landscape patterns 

were analyzed. The object-oriented technique in 
eCognition 9.0 (https://geospatial.trimble.com/ 
en/products/software/trimble-ecognition) was 
used to classify LULC from 1985 to 2015 using a 
random forest classifier. The ecological risk of the 
landscape was then assessed, and the features of 
its temporal and spatial change were examined. 
Multi-Layer Perceptron (MLP) and local spatial 
autocorrelation analysis using the Spatio 
temporal landscape ecological Random Forest 
(RF) approach were used to assess the ecological 
index's spatiotemporal aspects. Six LULC types 
were identified based on the actual conditions of 
the research region and the classification scheme 
designed for 30 m Landsat TM and ETM+ data 
including forest, cultivated land, grassland, alpine 
shrub land, built-up land, and water body. 
According to this categorization scheme, the 
built-up land contained highways and villages, 
while forest included coniferous, shrub, broad-
leaved, and mixed broadleaf-conifer forests. The 
data from the forest resource inventory and 
Google Earth photos were used to choose the 
training and validation samples. The same 
training and validation samples were utilized in 
several time periods to guarantee the 
comparability of LULC classification findings. All 
samples remained constant between 2014 and 
2024. The LULC changes from 2014 to 2024 were 
then analyzed using the MLP-STLERF algorithm 
by creating a land use transfer matrix using 
ArcGIS (https://www.arcgis.com/index.html). 
 
MLP-STLERF algorithm 
(1) Multi-layer perceptron network (MLP) 
The first processing components of MLP were put 
up in a one-way approach. In these networks, 
three types of matching layers including the 
input, hidden, and output layers interacted with 
each other to produce new information. The 
sensor network that linked these landscape 
layers had several weighting values that 
fluctuated between [-1, 1]. Each node in an MLP 
was subjected to one of two function types of 
summation or activation. The product of the 
input values, weight values, and bias values were 
obtained using the summing function as follows. 
 

https://www.resdc.cn/
https://geospatial.trimble.com/%20en/products/software/trimble-ecognition
https://geospatial.trimble.com/%20en/products/software/trimble-ecognition
https://www.arcgis.com/index.html
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Figure 1. Flowchart of proposed MLP-STLERF algorithm. 

 
 
𝑇𝑖 = ∑ 𝜔𝑗𝑖𝐽𝑗 + 𝛽𝑖

𝑚
𝑗=1                                                (1) 

 
where 𝜔𝑗𝑖  was the connection weight. 𝛽𝑖  was a 

bias value. 𝐽𝑗  was an input variable 𝑗. 𝑚 was the 

total quantity of inputs. An activation function in 
line was then activated. Although there were 
other ways to activate the MLP, the S-shaped 
sigmoid function was the most widely used one 
and was calculated as below. 
 

𝑒𝑖(𝑤) =
1

1+𝑒−𝑇𝑖
                                                                       (2) 

 
Equation (3) was then used to determine the 
neuron 𝑖’s ultimate output. 
 
𝑧𝑗 = 𝑒𝑗(∑ 𝜔𝑗𝑖𝐽𝑗 + 𝛽𝑖) 𝑚

𝑗=1                                                  (3) 

 
Learning started after the final structure of the RF 
was built to refine and evolve the weighting 
vectors of the network. These weighting vectors 
needed to be adjusted to estimate the results 

and maximize the network's overall error. The 
Random Forest's computationally demanding 
training phase significantly affected the MLP's 
efficacy and problem-solving skills. The workflow 
of the proposed method was shown in Figure 1. 
 
(2) Spatio temporal landscape ecological 
random forest (STLERF) 
To improve the system's classification accuracy, 
the decision tree node division technique 
employed an adaptive parameter selection 
strategy. Selecting different node-splitting 
algorithms for the same data set also resulted in 
different decision trees, even when the 
attributes varied. Since the accuracy of RF 
classification varied, a decision tree was used to 
select the best feature for dividing the nodes to 
develop a new splitting rule that was used for 
selecting and splitting node characteristics. There 
were two categories for the node splitting 
technique including linear combination. 
The Gini index and the information gain that was 
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achieved when the sample set 𝐶  was divided 
using features were displayed, employing the 
node splitting formula 4 and 5 below. 
 

𝐺𝑎𝑖𝑛(𝐶, 𝑏) = 𝐸𝑛𝑡(𝐶) − ∑
|𝐶𝑢|

|𝐶|
𝑈
𝑢=1 𝐸𝑛𝑡(𝐶𝑢)     (4) 

 

𝐺𝑖𝑛𝑖(𝐶, 𝑏) = ∑
|𝐶𝑢|

|𝐶|
𝑈
𝑢=1 𝐺𝑖𝑛𝑖(𝐶𝑢)                       (5) 

 
where 𝐶𝑢 was that every sample in the 𝐶 with a 
value of 𝑏𝑢  on a feature 𝑏  was found in the 𝑢 
branch node. 
 

𝐸𝑛𝑡(𝐶) = − ∑ 𝑜𝑙𝑙𝑜𝑔2𝑜𝑙
|𝑧|
𝑙=1                                   (6) 

 

𝐺𝑖𝑛𝑖(𝐶) = ∑ ∑ 𝑜𝑙𝑜𝑙′|𝑍|
𝑙′≠𝑙 = 1 − ∑ 𝑜𝑙2|𝑧|

𝑙=1
|𝑧|
𝑙=1      (7) 

 
The adaptive parameter selection procedure and 
combination node splitting formula were as 
follows to attempt an increased purity of the 
data set after splitting. 
 

𝐺 =
𝑚𝑖𝑛

𝛼, 𝛽 ∈ 𝑄
𝐸{𝐶, 𝑏} = 𝛼𝐺𝑖𝑛𝑖(𝐶, 𝑏) − 𝛽𝐺𝑎𝑖𝑛(𝐶, 𝑎) 

 

𝑠. 𝑡. {
𝛼 + 𝛽 = 1

0 ≤ 𝛼, 𝛽, ≤ 1
                                                 (8) 

 
where 𝛼, 𝛽  were the characteristic's splitting 
weight coefficient. Meantime, 𝐺 had a very low 
value. The procedure of adaptive parameter 
choice was utilized to obtain the ideal 
combination of parameters. The accuracy rate 
and categorization error rate were utilized in the 
study to evaluate efficiency. The sample 𝐶 
categorization error rate was defined as follows. 
 

𝐹(𝑒; 𝐶) =
1

𝑛
∑ ΙΙ(𝑒(𝑤𝑗) ≠ 𝑧𝑗)𝑛

𝑗=1                         (9) 

 
The accuracy percentage was defined as below. 
 

𝑎𝑐𝑐(𝑒; 𝐶)
1

𝑛
∑ 𝛪𝛪(𝑒(𝑤𝑗) = 𝑧𝑗) = 1 − 1𝐹(𝑒; 𝐶)𝑛

𝑗=1  (10) 

 
Comparison of proposed method with other 
exist methods 
To evaluate spatio temporal landscape patterns 
for the ecological risk based on proposed 

machine learning algorithm (MLP-STLERF), the 
accuracy of proposed algorithm was compared to 
the existing methods including CNN-LSTM [23] 
and Moran’s Value [24]. 
 
 

Results and discussion 
 

Changes in land use 
Shaanxi province's primary land use categories in 
2010 were forest land (38.01%) and agricultural 
land (42.88%). Only 1.18%, 8.13%, 6.20%, and 
0.97% of the entire research region was made up 
of grassland, water area, rural residential land, 
and urban land, respectively. There was little 
urbanization, and the study region was mostly 
composed of forests and agriculture. Significant 
changes in land use were seen in 2019. The areas 
of forest land, grassland, and water area dropped 
by 5.4%, 18.19%, 2.18%, while urban land, other 
construction land, and rural residential land grew 
by 33.26%, 21.22%, 19.42%, respectively (Figure 
2). While forest land, grassland, and water areas 
all declined during the last ten years, 
development land area increased significantly. 
 

 
 
Figure 2. Land used categories for past 10 years. 
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Figure 3. Various LULC types in the core zone, buffer zone, experimental zone, and the whole reserve. 

 
 
Features of land use and land cover changes 
throughout time and space  
The LULC spatial distribution maps created with 
MLP-STLERF between 2014 and 2024 
demonstrated that the most prevalent LULC type 
was forest. Cultivated terrain was mainly found in 
level valleys with plenty of water and rich soil. 
Grasslands were dispersed across the reserve. 
Due to height constraints, alpine shrub land was 
dispersed over the highland area and developed 
in areas with convenient water supplies and 
agricultural development. Between 2014 and 
2024, the total area of forest expanded by 100.88 
km². Additionally, the cultivated land area shrank 
by 85.23 km². The 87.46 km2 of farmed land that 
made up most of the expanded forest area was 
transferred. There were no discernible change 
trends in the built-up area, water body, alpine 
shrub land, or grass land. The results further 
displayed the area ratios of the various LULC 
types in the core zone, buffer zone, experimental 
zone, and the whole reserve in 2014, 2018, 2020, 

and 2024. Forest, cultivated land, grass land, 
alpine shrub land, built-up, and water body were 
the LULC types with the highest and lowest area 
ratios to the total area of the whole reserve. Over 
83% of the land was covered by forests, and 
between 2014 and 2024, this percentage 
increased from 83.12% in 2014 to 88.54% in 
2024. The proportion of cultivated land to total 
area fell from 10.42% in 2014 to 5.84% in 2024, 
indicating a declining trend in the area under 
cultivation. Between 2014 and 2024, the area 
ratios of the other LULC classes remained mostly 
constant. The LULC types in the core zone were 
alpine shrub land, grassland, and woodland. 
More than 85% of the core zone was made up of 
forest, which was the predominant type. Because 
of the elevation restriction, alpine shrub land was 
only found in the core zone. Out of the three 
management zones, the buffer zone had the 
lowest area with LULC categories as grassland, 
cultivated land, and woodland. The forest's 
percentage was over 95% and was trending 
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upward from 2020. The growing forest was 
moved from grassland and agricultural areas. 
Over the course of ten years, the percentage of 
forest in the experimental zone went from 
65.81% to 81.22% with an increase of 102.61 
km². The ratio of farmed land fell from 28.33% to 
15.74% with a declining area of 83.56 km2. A total 
of 85.60 km2 of farmed land was turned over to 
the forest. Grass land covered 2.70 km2 with a 
little bit decline. Water bodies and built-up areas 
were mostly found in the experimental zone, and 
their modifications were barely noticeable. 
Following an accuracy evaluation, the total LULC 
classification accuracies from 2014 to 2024 was 
86.36%, 85.51%, 85.69%, and 85.72%, 
respectively (Figure 3). These results might be 
used to fulfill the needs of landscape research in 
general. 
 
The structural dynamics of the landscape type 
might be more accurately described at the class 
level by examining a collection of landscape 
indices. Different terrain types had shown 
variations in their patterns throughout the last 
ten years. The biggest patch index and the 
percentage of landscape index for agricultural 
land showed a general decreasing trend, 
suggesting a decline in both the amount of 
agricultural land and the landscape advantage. 
The growth of agricultural land was towards a 
complex form and geographical fragmentation 
was represented in the rise in the landscape 
shape index and the fall in the aggregation index. 
While the patch density index and landscape 
form index showed a declining trend, the 
proportion of the landscape index grew for 
forests, suggesting that the patches' growing 
shapes tended to be smooth. The reducing public 
border was the main cause of the higher 
aggregation index, whereas the nearby patches 
displayed linked patch-like development. As the 
proportion of landscape index climbed in the 
case of building land, the patch density index, 
edge density index, and landscape form index all 
increased (Figure 4). The results suggested that 
the extension of the construction land area was 
mostly dependent on the growth of the number 
of patches, which filled in the spaces between 

them, improving their connectedness and raising 
the construction land's aggregation index. 
 

 
 
Figure 4. Overall Landscape combined with different index. 

 
Accuracy comparison of proposed model with 
other existing models 
The classification accuracies of proposed MLP-
STLERF model, the CNN-LSTM model, and 
Moran's value-based approach were 90.8%, 
80.2%, and 88.6%, respectively (Figure 5), which 
suggested that the MLP-STLERF model provided 
better accuracy in identifying ecological 
dynamics and spatiotemporal patterns of land 
use. The model's ability to better grasp intricate 
spatial relationships and temporal fluctuations 
was due to its combination of deep learning with 
landscape ecology concepts, which was 
responsible for its improved performance. 
 

 
 
Figure 5. Outcome of accuracies of compared models. 
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The mean absolute error (MAE) offered a simple 
way to evaluate the range of the mistake by 
counting the regular absolute disparities among 
the observed and predictable values of ecological 
location. Since MAE switched all mistakes 
equally, it was less susceptible to outliers than 
root mean square error (RMSE) and could be 
useful in some conditions. The MAE of proposed 
MLP-STLERF model was 0.01, which validated its 
superiority in capturing real values, while the 
values of MAE for Moran and CNN-LSTM were 
0.08 and 0.11, respectively, indicating the 
improved performance of the proposed method 
in minimalizing absolute errors. RMSE is an 
indicator of how much forecasts differ from 
actual outcomes and is a commonly used metric 
that calculates the average greatness of errors 
between expected and observed values. To 
highlight bigger errors brought on by squaring, it 
squares the discrepancies among the foreseeable 
and actual values, medians them, and then 
calculates the square root. The results showed 
that the proposed MLP-STLERF model achieved a 
RMSE value of 0.015, which was a comparatively 
low prediction error compared to that of Moran’s 
value of 0.12 and CNN-LSTM’s value of 0.127, 
indicating that the proposed model was effective 
in reducing develop errors (Table 1). 
 
Table 1. Numerical outcomes of RMSE and MAE. 
 

Methods RMSE MAE 

CNN-LSTM 0.127 0.11 

Moran 0.120 0.08 

MLP-STLERF 0.015 0.01 

 
 
Spatial temporal landscape ecology is the most 
used technique for evaluating landscape 
patterns. When applied to LULC, random forest is 
appropriate for several scales and may achieve 
the spatiotemporal manifestations of multi-
source risk with few in situ data. Nevertheless, 
there were several obvious ambiguities in the 
study including the heavy reliance on LULC 
results that the LULC inaccuracy might result in 
earned run average (ERA) uncertainty and LULC 
map errors that might reduce LULC data 

accuracy. Throughout 1986 to 2015, forests 
accounted for almost 80% of the total area, 
making them the predominant LULC category. As 
people pay more and more attention to 
environmental protection, the most important 
transfer features of LULC are the reduction of 
cultivated land and the growth of forest. While 
the LULC was comparatively steady in the core 
and buffer zones, the LULC transfer occurred 
most sensitively in the experimental zone with 
the total ecological risk dropped from 2020. Over 
the course of the ten years, the geographic 
aggregation of ecological risk steadily diminished 
with marginal improvement in 2020. The natural 
flora had been replaced by rubber forest and tea 
plantation regions, causing tropical rainforests to 
become much more fragmented. Landscape 
ecological risk is influenced by both 
environmental and social variables including 
temperature, precipitation, population density, 
and human involvement. These influences have 
complicated driving mechanisms and regional 
variability. 
 
 

References 
 

1. Wang H, Wang WJ, Wang L, Ma S, Liu Z, Zhang W, et al. 2022. 

Impacts of future climate and land use/cover changes on water-

related ecosystem services in Changbai mountains, northeast 

China. Front Ecol Evol. 10:854497.  

2. Wang LJ, Ma S, Zhao YG, Zhang JC. 2021. Ecological restoration 

projects did not increase the value of all ecosystem services in 

Northeast China. For Ecol Manag. 495:119340.  

3. Xu S, Li S, Zhong J, Li C. 2020. Spatial scale effects of the variable 

relationships between landscape pattern and water quality: 

Example from an agricultural karst river basin, Southwestern 

China. Agric Ecosyst Environ. 300:106999.  

4. Ren J, Yan D, Ma Y, Liu J, Su Z, Ding Y, et al. 2022. Combining 

phylogeography and landscape genetics reveals genetic 

variation and distribution patterns of Stipa breviflora 

populations. Flora. 293:152102.  

5. Yu Z, Song D, Song Y, Lau SK, Han S. 2022. Research on a visual 

thermal landscape model of underground space based on the 

spatial interpolation method—A case study in Shanghai. Energy 

Rep. 8:406–418.  

6. Abbas Z, Zhu Z, Zhao Y. 2022. Spatiotemporal analysis of 

landscape pattern and structure in the Greater Bay Area, China. 

Earth Sci Inform. 15(3):1977–1992.  

7. Li S, He W, Wang L, Zhang Z, Chen X, Lei T, et al. 2023. 

Optimization of landscape pattern in China Luojiang Xiaoxi 



Journal of Biotech Research [ISSN: 1944-3285] 2025; 22:11-20 

 

20 

 

basin based on landscape ecological risk assessment. Ecolo 

Indic. 146:109887.  

8. Zeng C, He J, He Q, Mao Y, Yu B. 2022. Assessment of land use 

pattern and landscape ecological risk in the Chengdu-

Chongqing economic circle, Southwestern China. Land. 

11(5):659.  

9. Bian J, Chen W, Zeng J. 2022. Ecosystem services, landscape 

pattern, and landscape ecological risk zoning in China. Environ 

Sci Pollut Res. 30(7):17709–17722.  

10. Fernandes B, Batista L. 2020. Spatial-temporal analysis of the 

forest fragments surrounding a conservation unit in the 

southern region of Brazil. Environ Sci Proc. 3(1):48.  

11. Wang H, Liu X, Zhao C, Chang Y, Liu Y, Zang F. 2021. Spatial-

temporal pattern analysis of landscape ecological risk 

assessment based on land use/land cover change in 

Baishuijiang National nature reserve in Gansu Province, China. 

Ecolo Indic. 124:107454.  

12. Yan Z, Wang Y, Wang Z, Zhang C, Wang Y, Li Y. 2023. 

Spatiotemporal analysis of landscape ecological risk and driving 

factors: A case study in the Three Gorges Reservoir area, China. 

Remote Sens. 15(19):4884.  

13. Abolmaali SM, Tarkesh M, Mousavi SA, Karimzadeh H, 

Pourmanafi S, Fakheran S. 2024. Impacts of spatio-temporal 

change of landscape patterns on habitat quality across 

Zayanderud Dam watershed in central Iran. Sci Rep. 14(1):8780.  

14. Li L, Zhou X, Yang L, Duan J, Zeng Z. 2022. Spatio-temporal 

characteristics and influencing factors of ecological risk in 

China’s north–south transition zone. Sustainability. 14(9):5464.  

15. Zhang H, Liang X, Chen H, Shi Q. 2021. Spatio-temporal 

evolution of the social-ecological landscape resilience and 

management zoning in the loess hill and gully region of China. 

Environ Develop. 39:100616.  

16. Wang X, Zhang C, Wang C, Liu G, Wang H. 2021. GIS-based for 

prediction and prevention of environmental geological disaster 

susceptibility: From a perspective of sustainable development. 

Ecotoxicol Environ Saf. 226:112881.  

17. Abdollahi S, Zeilabi E, Xu CCY. 2023. Habitat quality assessment 

based on local expert knowledge and landscape patterns for 

bird of prey species in Hamadan, Iran. Model Earth Syst Environ. 

10(2):2051–2061.  

18. Abdollahi S. 2024. Habitat quality assessment of wild life to 

identify key habitat patches using landscape ecology approach. 

J Nat Environ. 76(Special Issue):147–162.  

19. Abolmaali SM, Tarkesh M, Mousavi SA, Karimzadeh H, 

Pourmanafi S, Fakheran S. 2024. Identifying priority areas for 

conservation: using ecosystem services hotspot mapping for 

land-use/land-cover planning in central of Iran. Environ Manag. 

73(5):1016–1031.  

20. Motlagh ZK, Lotfi A, Pourmanafi S, Ahmadizadeh S, Soffianian A. 

2020. Spatial modeling of land-use change in a rapidly 

urbanizing landscape in central Iran: integration of remote 

sensing, CA-Markov, and landscape metrics. Agric Ecosyst 

Environ. 192(11):695.  

21. Zhang SL, Gao PC, Tong YA, Norse D, Lu YL, Powlson D. 2015. 

Overcoming nitrogen fertilizer over-use through technical and 

advisory approaches: A case study from Shaanxi Province, 

northwest China. Agric Ecosyst Environ. 209:89–99.  

22. Zhao ZP, Yan S, Liu F, Wang XY, Tong YA. 2014. Analysis of 

nitrogen inputs and soil nitrogen loading in different kinds of 

orchards in Shaanxi Province. Acta Ecologica Sinica. 34(19): 
5642-5649.  

23. Masolele RN, De SV, Herold M, Marcos D, Verbesselt J, Gieseke 

F, et al. 2021. Spatial and temporal deep learning methods for 

deriving land-use following deforestation: A pan-tropical case 

study using Landsat time series. Remote Sens Environ. 

264:112600.  

24. Zhang M, Ma S, Gong JW, Chu L, Wang LJ. 2023. A coupling 

effect of landscape patterns on the spatial and temporal 

distribution of water ecosystem services: A case study in the 

Jianghuai ecological economic zone, China. Ecol Indic. 

151:110299. 


