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Soils are prone to the deposition of trace metals, thereby posing potential health risks to humans. As Yongchang 
county in Gansu province, China is an important mining area, it is necessary to evaluate its heavy metal 
distribution pattern and pollution characteristics. During environmental governance audits, it was found that 
construction parties often used point data for evaluation, which was less representative. This study examined 
eight heavy metals including copper (Cu), zinc (Zn), nickel (Ni), lead (Pb), arsenic (As), chromium (Cr), vanadium 
(V), and cobalt (Co) in 1,266 cultivated topsoil samples from Yongchang county. The commonly used geographic 
information system (GIS)-based interpolation techniques including inverse distance weighting (IDW), local 
polynomial (LP), and radial basis functions (RBF), ordinary Kriging (OK), and empirical Bayesian Kriging (EBK) were 
employed for spatial distribution mapping of heavy metals. Single-factor index method combined with Nemerow 
pollution index was used to calculate the extent of heavy metal pollution. The results showed that EBK and LP 
consistently provided the most accurate predictions of heavy metals concentrations. The concentration of As was 
greater than the standard values of 25 mg/kg on some towns while other elements all showed lower values than 
National Soil Environmental Quality Standard. The Nemerow pollution index evaluation results demonstrated 
that the safety level, alert level, light pollution, and moderate pollution were 85.931%, 12.548%, 1.518%, and 
0.004% of the region's arable land, respectively. It is of great significance to improve the efficiency of 
environmental auditing and make more intuitive judgments on the effectiveness of environmental governance. 
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Introduction 
 
While naturally occurring in soils, the levels of 
heavy metals can rise to hazardous proportions 
due to both geological processes and human 
activities, posing risks to humans, flora, and 
fauna alike [1, 2]. Activities contributing to 

environmental impact encompass the extraction 
and processing of metals, combustion of fossil 
fuels, application of agricultural chemicals like 
fertilizers and pesticides, manufacture of 
batteries and various metal goods in industrial 
settings, as well as the management of sewage 
sludge and the disposal of urban waste [3]. Soil is 

mailto:ppleyuan@163.com
mailto:dudandan19@mails.ucas.ac.cn


Journal of Biotech Research [ISSN: 1944-3285] 2025; 22:127-140 

 

128 

 

one of the most fundamental materials for 
human survival and development since 
environmental quality is directly related to 
human health and safety [4]. With rapid 
industrialization and modernization of China's 
development, heavy metals pollution in the soil’s 
environment is increasingly becoming a 
prominent issue [5]. Pollution is seriously 
affecting economic development and biological 
health of the people [6]. Analyzing the 
distribution of heavy metals in the region and 
assessing the resulting pollution in soil can lay a 
scientific foundation for implementing soil 
environmental management and conservation 
strategies. 
 
Evaluation of heavy metal pollution of soil has 
received a lot of research attention [7]. 
Geographic information system (GIS) technology 
has unique advantages in resource and 
environmental auditing, which can improve audit 
efficiency, accuracy, ensure data integrity, and 
facilitate audit evidence collection and 
verification. GIS has proven to be an effective 
tool for visualizing environmental contaminants 
[8]. Due to limitations of time and resources, the 
number of soil samples obtained from research 
sites for chemical analysis is usually limited, 
which leads to poor quality datasets and may 
undermine experimental results and conclusions 
[9]. To address any deficiencies in the cognitive 
design framework, it is possible to employ data 
interpolation to estimate values in areas that lack 
sampling by leveraging values from nearby 
observations [10]. Many more different types of 
studies have been carried out, in which a variety 
of deterministic and geostatistical interpolation 
techniques have been used to extract soil 
characteristics [11]. Among the common 
methods employed for mapping soil 
contamination, there are five key interpolation 
techniques including inverse distance weighting 
(IDW), local polynomial (LP), ordinary Kriging 
(OK), empirical Bayesian Kriging (EBK), and radial 
basis functions (RBF). Research conducted on 
trace elements in the soil of Matehuala, Mexico 
indicated that the most effective interpolation 
method was IDW [11, 12]. In contrast, 

Mohammad et al. demonstrated that cokriging 
and ordinary Kriging (OK) were more effective 
than the IDW approach in estimating the 
geographic spread of soil properties [13]. Bhunia 
et al. further demonstrated that the method of 
ordinary Kriging was more effective for 
estimating the spatial allocation of soil organic 
carbon (SOC) [14]. Saha et al. evaluated the 
efficiency of IDW, LP, and RBF techniques and 
reported that all these interpolation techniques 
had moderate accuracy in predicting the mean 
concentration of trace metals in soil [2]. 
 
Yongchang county in Gansu province, China is an 
emerging industrial area for heavy metal 
processing. Heavy metal contamination in 
Yongchang county is high because of large 
number of mining and industrial sewage. The soil 
heavy metal elements have strongly enriched the 
soil surface layer. Crops generally have excessive 
heavy metal content, particularly in the case of 
vegetables [15]. It has been observed that 
elevated concentrations of metals can directly 
lead to toxic effects such as the suppression of 
cytoplasmic enzymes and the impairment of 
cellular structures, which arise from oxidative 
stress. Observations have shown that the growth 
of plants on soils contaminated with heavy 
metals is adversely affected due to alterations in 
their physiological and biochemical functions. A 
persistent decrease in the growth of plants leads 
to lower yields, ultimately contributing to food 
shortages. Management and rehabilitation of soil 
environments are essential to provide a scientific 
framework for addressing heavy metal pollution, 
given its considerable effects on local agricultural 
practices and the ecological development of the 
region. Consequently, the importance of 
assessing soil impacted by heavy metals should 
not be underestimated. Nevertheless, research 
on the distribution over time and space, as well 
as the potential ecological risks associated with 
heavy metals in Yongchang county remains 
limited. The characteristics of soil in this 
contaminated region remain largely unexplored. 
This study conducted a large-scale survey in 
farmland for heavy metal contamination in 
topsoil of Yongchang county and characterized 
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the distribution of heavy metal concentrations by 
GIS based spatial distribution to estimate the 
pollution levels of heavy metals in farmland and 
assess the environmental and ecological risk of 
the area affected by the mining. The results 
would provide a scientific foundation for 
effective soil environmental management and 
conservation. 
 
 

Materials and methods 
 
Geology and hydrology of the study area 
The study was conducted in Yongchang county, 
Gansu, China (101°04′–102°43′ E, 37°47′21″–
38°39′58″ N), which comprises ten administrative 
towns, covering a total area of 7,439.27 square 
kilometers with a population of 243,000. The 
area is characterized by mountainous terrain, 
plains, Gobi Desert, and desert oasis with a 
minimum altitude of 1,452 meters, highest 
elevation of 4,442 meters, and an average 
altitude of 2,000 meters. Yongchang county has a 
temperate continental climate with cold winter 
and hot summer and an average annual 
temperature of 7℃, average annual rainfall of 
183.2 mm, frost-free period of 134 days. It has an 
average annual sunshine of 2,884.2 hours with a 
sunshine rate of 65% and annual evaporation of 
2,000.6 mm (Figure 1). 
 
 

 

 
Figure 1. Spatial distribution of sampling points and cultivated land 
units in the study area. 

 
 

Sample collection and examination 
Sampling units were established at the village 
level by considering the unique characteristics of 
each community, variations in land use and soil 
types, and the distribution patterns of soil 
classifications relevant to the target species. 
Based on these factors, the locations of soil 
sampling points were further optimized. Upon 
finalizing the sampling units and location counts, 
geographic coordinates were mapped to reflect 
current land use patterns with each point 
representing the centroid of its respective unit. 
Two field sampling techniques were employed 
including topographic coordinate positioning 
using landmark features such as rivers, villages, 
valleys, and prominent structures for initial 
approximation followed by global positioning 
system (GPS) verification and scaled reference 
mapping involving fixed geographical reference 
points with measured distances cross-validated 
by GPS. In mountainous terrain, composite soil 
samples from 0 - 20 cm depth were collected 
from 15 points arranged in an S-pattern using 
vertical drilling, while gentle slopes employed a 
five-point sampling scheme to minimize spatial 
bias with all coordinates precisely recorded. Each 
of the 1,266 sampling sites was assigned a unique 
identifier documenting location name, 
coordinates, and collection date. The soil 
samples were air-dried in the laboratory at room 
temperature approximately 25℃, then ground 
by an agate mortar to pass through a 0.075 mm 
nylon sieve. Approximately 4.0 g of powder 
sample was squeezed under 40 tons of pressure 
for 20 seconds, creating a compressed specimen 
with a thickness of 4 mm and a diameter of 30 
mm. The total contents of As, Co, Cr, Cu, Ni, Pb, 
V, and Zn were determined using X-MET7000 
high-accuracy portable X-ray fluorescence 
spectrometry (Oxford Instruments, High 
Wycombe, England) with the limits of detection 
(LODs) of 1.600, 1.100, 1.200, 10.000, 1.000, 
1.000, 1.400, and 2.000 mg/kg, respectively [16]. 
 
Assessment of agricultural land resource 
management units 
For the identification of management units for 
crop cultivation, relevant maps of the 2019 
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administrative map, the land usage map from 
2019 with a scale of 1:50,000, along with the 
2008 soil map with a scale of 1:50,000 were 
utilized. The data were provided by Gansu 
Engineering Research Center for Smart 
Agriculture, Lanzhou, Gansu, China. A map 
indicating the primary management unit was 
then produced by combining the present land 
use map, the soil maps, and the administrative 
map. 
 
Interpolation approaches for the spatial 
distribution of metals 
(1) Inverse distance weighted (IDW) 
The combination of multivariate statistical 
analysis with GIS in inverse distance weighting 
(IDW) is one of the most widely used 
deterministic interpolation methods in soil 
studies. IDW is based on the principle that the 
influence of known points decreases with 
distance, and the weights assigned are inversely 
proportional to the power of the distance. This 
approach provided larger weights to spatially 
adjacent points compared to those farther away, 
which aligned conceptually with the idea that 
closer observations were more relevant and was 
expressed as follows [17, 18].  
 

Z = ∑ (Zi/di
p

)/ ∑ (1/di
p

)n
i=1

n
i=1       (1) 

 
where Z was the approximate value at the 
interpolation point. Zi  was the calculated value 
at point i. n was the total number of values 
obtained through interpolation. di  was the 
distance between the interpolation point Z and 
the calculated value Zi . p was the weighting 
power. In this study, IDW calculations were 
performed based on adjacent observation points, 
meaning that each known point adjusted 
independently of the others [16]. However, the 
predicted values were constrained within the 
range of the values used for interpolation. Since 
IDW was a weighted average method, the 
average predicted value could not exceed the 
maximum input value or fall below the minimum 
input value. Consequently, IDW might not 
capture extreme features such as ridges or 

valleys if these extrema were not present in the 
sampled data. 
 
(2) Local polynomial (LP) 
Local polynomial (LP) interpolation techniques 
have been utilized in meteorological research for 
over 50 years [19]. LP interpolation involves 
fitting a unique polynomial equation to localized 
regions based on observed values, the spatial 
extent of the region, the type of observation 
neighborhood, and the selected kernel function 
[20]. The goal of polynomial interpolation is to 
determine a polynomial function that best fits a 
specified set of observation points. While a global 
polynomial may cover the entire surface, it often 
fails to capture local variations effectively. The LP 
method addresses this issue by using localized 
polynomial fits, which can better accommodate 
natural variations in the data [21]. Within the 
local region, a weight is assigned to each 
observation point, which is typically achieved 
using a kernel function and determines the 
weight based on the distance between the 
observation point and the prediction point. In 
this study, several kernel functions including 
constant, exponential, Gaussian, Epanechnikov, 
quartic, and polynomial of degree 5 were 
evaluated as below. 
 

Zi  =  (1 −
di

R
)p     (2) 

 
where, Zi was the average observation value at 
the i-th measurement point. di  was the 
difference between the observation point and 
the prediction point. R  was the considered 
neighboring region. p  was the order of the 
polynomial function defined by the operator. 
 
(3) Radial basis functions (RBF) 
Radial basis function (RBF) interpolation, also 
known as spline interpolation, is a precise 
interpolation technique rooted in the principles 
of artificial neural networks (ANN) [20]. This 
technique includes five different basis functions 
as thin plate splines (TPS), splines with tension 
(ST), inverse multiquadrics (IMQ), completely 
regularized splines (CRS), and multiquadrics (MQ). 
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RBF interpolation uses these functions to 
generate predictions based on a specified region 
and the distances from known data points. Each 
prediction involves combining the effects of all 
relevant basis functions according to their 
influence on the prediction point as follows. 
 
Z(x) = ∑ aifi(x) + ∑ bjφ(dj)

n
i=1

m
i=1         (3) 

 

φ(d)  =  ln(
cd

2
)2 + E1(cd)2 + γ        (4) 

 
where d  was the difference between the 
estimated point and the observed point. c was 
the smoothing factor. E1 was the modified Bessel 
function. γ was the Euler constant. 
 
(4) Ordinary Kriging (OK) 
Advanced geostatistical techniques such as 
Kriging represent a sophisticated category of 
interpolation methods. Geostatistical algorithms 
are not only proficient at generating predictive 
surfaces but also provide some indication of the 
reliability or efficiency of the predictions [22]. 
Kriging is widely recognized for its effectiveness 
in characterizing spatial variability, particularly in 
soil studies, and is valued for its ability to produce 
optimal and constructive estimates for 
unsampled areas. Ordinary Kriging (OK) is based 
on a statistical model that includes 
autocorrelation or statistical correlation between 
observed points [23]. Considering the spatial 
orientation relationship between known sample 
points and predicted points, different ordinary 
Kriging methods use different semivariogram 
models that include spherical semivariogram 
model, circular semivariogram model, 
exponential semivariogram model, Gaussian or 
normal distribution semivariogram model, linear 
semivariogram model with a sill. These models 
are used to define the spatial correlation 
structure in ordinary Kriging in this study. OK as a 
spatial interpolation predictor is expressed as a 
weighted sum of the following data. 
 
Z(x) = ∑ λiZ(xi)

n
i=1        (5) 

 

where Z(x) was the predicted value at location x. 
Z(xi) was the known value at sampled location xi. 
λi was the weight assigned to each known value, 
determined based on the spatial correlation 
structure. 
 
(5) Empirical Bayesian Kriging (EBK) 
Empirical Bayesian Kriging (EBK) enhances 
traditional Kriging by integrating Bayesian 
statistical methods to optimize model 
parameters and improve prediction accuracy. 
Unlike conventional Kriging, which relies on a 
predefined semivariogram model, EBK adjusts 
the model through simulation and subset 
techniques to account for errors in the predicted 
semivariogram [24, 25]. It assumes that the 
predicted semivariogram accurately represents 
the spatial variability of the interpolation area, 
allowing for linear predictions with varying 
spatial dispersions [23]. EBK combines two 
geostatistical concepts of intrinsic random 
function Kriging (IRFK) [26], which addresses 
spatial data randomness and autocorrelation, 
and the linear mixed model (LMM) [27], which 
incorporates external trends. By integrating 
these approaches, EBK provides a unified 
computational model that improves stability and 
reliability in predictions. Additionally, EBK 
employs various semivariogram models such as 
power, linear, thin plate spline, exponential, and 
Whittle functions to define the spatial correlation 
structure, enhancing the accuracy and reliability 
of the interpolation results. Both IRFK and LMM 
models are fitted using the same procedure, 
combining these approaches into a single 
computational framework as below. 
 

Zi  =  y(si) + εi, i = 1. . . . . . K̅̅ ̅̅ ̅̅ ̅̅ ̅̅       (6) 
 
where Zi  was the measured value at the 
observation point si . y(s)  was the Gaussian 
process at the location s under study. εi was the 
measurement error. K was the total number of 
measurements. 
 
Accuracy evaluation 
To allow for an evaluation of the various model 
performances, the collected data was 
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categorized into two sets with 80% of sampling 
points being used for model training and 20% of 
sample points for model validation against the 
predicted values generated using the reference 
interpolation methods that included IDW, LP, RBF, 
OK, and EBK to estimate the spatial distribution 
of heavy metals in agricultural soils. To determine 
the most suitable method, comparisons were 
conducted based on mean relative error (MRE), 
root mean square error (RMSE), and coefficient 
of variation (CV) according to various criteria. A 
minimal prediction error signified that the 
forecasting outcome was deemed both 
satisfactory and exemplary. In this research, it 
was deemed that a smaller CV value was 
regarded as the most favorable. CV serves as a 
statistical tool to quantify how data points are 
distributed relative to the average within a 
dataset. For soil samples, the CV served as an 
indicator of the extent of variability in data 
relative to the average concentration of metals 
present. An increased CV value signified that 
there was greater variability around the means. 
A lower value of CV was advantageous, indicating 
that the range of data points was closely grouped 
around the average. The following equations 
were for the metrics utilized to evaluate the 
precision of the predictions. 
 

MRE =
1

n
∑ |z∗(xi)−Z(xi)

Z(xi)
|n

i=1        (7) 

 

RMSE =  √
∑ [z∗(xi)−Z(xi)]2n

i=1

n
       (8) 

 

CV =
standard deviation of predicted values

mean of predicted values
       (9) 

 
where Z(xi) was the observed value at point i. 
z∗(xi) was the predicted value at point i. n was 
the number of observed sample data points. 
 
Environmental risk assessment methods and 
grades 
This study utilized the single factor index method 
combined with Nemerow pollution index method 
to calculate the extent of heavy metal 
environmental risk as follows. 
 

For single Factor Index method: 
 

/i i ip c s=      (10) 

 
where Pi was single factor index of pollutant i 
(mg/kg). Ci was measured concentrations of 
pollutant i (mg/kg). Si was national soil 
environmental quality standards (mg/kg). 
 
For Nemerow pollution index method: 
 

( ) ( )
22

Pc= max + 2pi pi 
  

    (11) 

 
where Pc was Nemerow pollution index. max pi 
was the max value of single pollution index. pi 
was the average value of single pollution index. 
According to the actual situation of Yongchang 
county topsoil pH, values of National Soil 
Environmental Quality Standard (GB15618-2008) 
large than 7.5 were used as evaluation index [28], 
which were Cu (100 mg/kg), Zn (300 mg/kg), Ni 
(100 mg/kg), Pb (80 mg/kg), As (25 mg/kg), Cr 
(250 mg/kg), V (130 mg/kg), and Co (40 mg/kg). 
The grading criteria for single-factor pollution 
assessment were established as light pollution 
level (Pi < 1.0), moderate pollution level (1.0 ≤ Pi 
< 2.0), strong pollution level (2.0 ≤ Pi < 3.0), and 
very strong pollution level (Pi ≥ 3.0). For the 
comprehensive environmental risk assessment, 
the Nemerow pollution index classification 
followed the standard methodology with five 
pollution grades defined as safety level (Pc < 0.7), 
alert level (0.7 ≤ Pc < 1.0), light pollution (1.0 ≤ Pc 
< 2.0), moderate pollution (2.0 ≤ Pc < 3.0), and 
heavy pollution (Pc ≥ 3.0) [29]. 
 
 

Results 
 

Statistical analysis of heavy metal content 
The results showed that the average 
concentrations of 8 heavy metals in the arable 
layer soil of Yongchang county didn’t exceed the 
value of National Soil Environmental Quality 
Standard (GB15618-2008) (Table 1). The single 
factor  index  of  them  was  less  than 1, indicating 
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Table 1. Descriptive statistics of cultivated land arable layer soil Cu, Zn, Ni, Pb, As, Cr, V, and Co contents in Yongchang county. 
 

Element 
Mean 

(mg/kg) 
SD Skewness Kurtosis 

Single factor 
index 

Variation 
coefficient 

Environ standards 
(mg/kg) 

Samples 

Cu 18.53 8.92 0.41 0.28 0.19 0.48 100 1,226 
Zn 59.91 14.8 2.9 33.28 0.20 2.05 300 1,266 
Ni 32.47 11.81 0.2 0.03 0.32 0.36 100 1,263 
Pb 18.53 19.2 2.76 14.94 0.23 1.03 80 600 
As 20.7 9.75 0.23 0.78 0.83 0.47 25 1,101 
Cr 61.46 31.88 0.26 -0.29 0.24 0.52 250 1,288 
V 80.82 49.9 0.61 0.001 0.62 0.61 130 1,122 

Co 13.86 8.47 0.75 0.41 0.34 0.61 40 1,106 

 
 
light pollution level. The descending order of the 
degree of pollution was As, V, Co, Ni, Cr, Pb, Zn 
and Cu, while the average values of the degree of 
contamination were 0.83, 0.62, 0.34, 0.32, 0.24, 
0.23, 0.20 and 0.19, respectively. Among them, 
the highest average pollution levels were 
obtained with As and the lowest with Cu. The 
minimum and maximum values reflected the 
concentration range of heavy metals, which 
presented an order of V, Zn, Pb, Cr, As, Ni, Cu and 
Co. The trend of median concentrations of heavy 
metals was toward minimum direction with less 
than half of the median value of the sample. The 
coefficient of variation of the heavy metals 
followed a descending order of Zn, Pb, V, Co, Cr, 
Cu, As and Ni with the CV values as 2.05, 1.03, 
0.61, 0.61, 0.52, 0.48, 0.47 and 0.36, respectively. 
Zinc and lead had their CVs exceeding 1, and the 
lowest value of 0.36 was observed with Ni. The 
high CV found in the heavy metals could be 
explained by the presence of the metals in the 
soils due to outside interference, which was 
related to the chemical industry in Yongchang 
county. The heavy metals showed a higher 
degree of movement towards the right side with 
Zn and Pb having the highest skewness, which 
reflected the industrial development or other 
causes that made heavy metal content in some 
areas more than the original level. From the peak 
values, Zn and Pb had deeper distribution than 
normal. As and Co had slightly more prominent 
than normal distribution. Zinc and lead contents 
experienced dramatic high changes, mainly 
because Yongchang county is an important non-
ferrous metal smelting and processing area. 

Drought, water shortage, and conventional 
sewage irrigation increased the accumulation of 
heavy metals in the soil. The cultivated land, 
industrial and mining areas were found at 
different distances in Yongchang county, which 
might be responsible for the dramatic changes in 
the phenomenon of heavy metal contents. 
 
Comparison of five methods for interpolation 
Overall, the various interpolation methods 
estimated the average levels of trace metals in 
soil with a fair degree of precision (Figure 2). An 
evaluation of five interpolation methods across 
various functions revealed the optimal technique 
for the eight selected trace metals. The criteria 
established favored the MRE and CV values that 
were the closest to 0 with a strong emphasis on 
achieving the lowest RMSE. An evaluation was 
conducted on three interpolation methods based 
on deterministic approaches (IDW, LP, and RBF) 
alongside two methods rooted in geostatistics 
(OK and EBK) to determine the most effective 
technique for interpolation. In the area studied, 
the concentrations of eight distinct soil metals 
were estimated using various interpolation 
methods with EBK employing the Whittle 
semivariogram for chromium, LP utilizing an 
exponential semivariogram for vanadium, EBK 
with an exponential semivariogram for cobalt 
and copper, OK with a circular semivariogram for 
nickel, LP applying a disjoint parabolic function 
for zinc and lead, and RBF implementing a spline 
with tension function for arsenic. The results 
indicated that EBK and LP emerged as the most 
effective techniques in this research. 
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Figure 2. Performance of the five interpolation techniques under different functions. EBK_KBD, EBK_WID, EBK_WHI, EBK_EXD, EBK_EXP were EBK 
with K_Bessel_Detrended, Whittle_Detrended, Whittle_Detrended, Exponential_Detrended, Exponential function. OK_LIN, OK_GAU, OK_EXP, 
OK_SPH, OK_CIR were OK with linear, Gaussian, exponential, spherical, circular function. LP_CON, LP_POL, LP_EPA, LP_GAU, LP_EXP were LP with 
constant, polynomial of degree 5, Epanechnikov, Gaussian, exponential function. BRF_IMQ, BRF_MQ, BRF_ST, BRF_CRS were BRF with 
Inverse_Multiquadric_Function, Multiquadrics, Spline_With_Tension, Completely_Regularized_Spline. IDW_p3 was IDW with power 3. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 
Figure 3. Spatial distribution of 8 elements contents of arable layer soil in Yongchang county. (a). As using RBF. (b). V using LP. (c). Zn using LP. (d). 
Pb using LP. (e). Ni using OK. (f) Co using EBK. (g). Cu using EBK. (h). Cr using EBK. 

 
 
Spatial distribution characters of heavy metals 
The spatial variability of heavy metals leads to the 
formation of a regular spatial distribution 

pattern, which is a specific manifestation of the 
spatial variability of heavy metals [30]. 
Geostatistical methods are usually used to insert 
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spatial data to form maps, which can more 
intuitively and accurately describe the spatial 
distribution of heavy metals in soil, such as shape, 
size and location [31]. It has benefits to well 
understand the situation of spatial distribution 
pattern of heavy metals. The most suitable 
interpolation methods were used to determine 
the spatial distribution characters of heavy 
metals of the cultivated land based on sampling 
points and the actual measurement data of 
Yongchang county. By using function of ArcGIS 
Geostatistical Analyses, interpolation combined 
with soil environmental quality standards 
(GB15618-2008) [28] and the single factor index 
raster data classification was applied to obtained 
As, V, Co, Ni, Pb, Cu, Zn and Cr concentration 
levels map of Yongchang county (Figure 3). The 
result illustrated that the levels of As exceeded 
the permissible limit of 25 mg/kg in Hongshanyao 
Town, Dongzhai Town, as well as in smaller 
regions of Zhuwangpu Town and Shuiyuan Town 
(Figure 3a), which indicated that human activities 
in the region had negatively influenced the 
concentrations of this element. Activities such as 
ore processing, the generation of slag, and the 
accumulation of metal particulates in the soil 
around mining areas might contribute to the 
elevated levels of arsenic found in certain 
locations. The levels detected for other elements 
remained below the thresholds established by 
the National Soil Environmental Quality Standard 
(GB15618-2008). The distribution pattern of Pb 
resembled an island configuration, featuring two 
segments that declined outward from a central 
peak concentration area located near Xinchengzi 
Town (Figure 3d). V exhibited two relatively high 
concentration areas located in the vicinity of 
Hongshanyao Town and Dongzhai Town (Figure 
3b). Co exhibited analogous patterns in its spatial 
distribution (Figure 3f). The distribution of Zn and 
Ni reflected a comparable trend, exhibiting 
elevated levels in Hongshanyao Town, Xinchengzi 
Town, Hexipu, and Zhuwangpu Town (Figure 3c 
and 3e). Three notable areas of elevated 
concentrations for Co and Cr were identified in 
Hongshanyao, Dongzhai, and Zhuwangpu Town 
(Figure 3f and 3h). 
 

Assessment of environmental risk 
Furthermore, 8,411 patches were obtained by 
assigning heavy metals concentration raster data 
value on arable land. Nemerow pollution index 
method was used to calculate the value of each 
patch, and the patch was classified according to 
grades of environmental risk assessment. The 
Nemerow pollution index of 7,453 patches of 
arable land was less than 0.7, consisting of an 
area of 8,0274.19 hm2 with safety level. There 
were 907 patches’ Nemerow pollution index 
ranging from 0.7 to 1.0, consisting of an area of 
11,721.7 hm2 as the pollution risk alert level, 
while the light pollution level consisted of 50 
patches covering an area of 1,417.83 hm2. The 
cultivated lands safety level, alert level, light 
pollution, and moderate pollution levels 
accounted for 85.931%, 12.548%, 1.518%, and 
0.004% of the region's arable land, respectively. 
The area of pollution accounted for 1.522% of 
total arable land in Yongchang county, which 
constituted an area of 1,421.47 hm2. The 
environmental risk level and space distribution of 
cultivated land arable layer soil in Yongchang 
county were illustrated in Figure 4. Most of 
cultivated land belonged to safety level. Alert 
level of cultivated land distributed around the 
urban periphery of Dongzhai Town, Shuiyuan 
Town, and Zhuwangbu Town, where the 
construction land and industrial and mining land 
were located. Light pollution and moderate 
pollution levels were mainly distributed in the 
urban periphery of Hongshanyao Town. The 
pollution of these regions might be caused by 
human activities including discarded garbage, 
fertilizer, and transportation. Land irrigation of 
wastewater and application of sludge to land and 
city dust precipitation were the main causes for 
the heavy metal pollution [15]. Zonal and spatial 
correlation could be indicative of the main 
reasons of As, V, Pb, and Co pollution. The light 
pollution and moderate pollution level land 
accounted for the proportion in the research area 
to be small, while large alert level arable land 
area was dominated responsible for the high 
environmental risk. Pollution existed in almost all 
areas of human activity in Yongchang county. 
Heavy traffic, vigorous human activities, and low 
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Figure 4. Environmental risk level and space distribution of cultivated land arable layer soil in Yongchang county. 

 
 
vegetation cover might be responsible for high 
levels of soil As, V, Pb, and Co contamination [32]. 
 
 

Discussion 
With the help of GIS technology for point data 
obtained during agri-environmental auditing, 
spatial interpolation technique was used in this 
research to predict the unsampled arable land 
and infer the spatial distribution of each element. 
Spatial interpolation technique as a fast and 
intuitive graphical traceability method can 
provide accurate spatial prediction of element 
content, matrix factor assignment, and so on to 
infer the potential sources of the elements [33]. 
GIS-based interpolation techniques including 
IDW, LP, and RBF, OK, EBK were used to map the 
spatial distributions of the elements. Each 
method had its own advantages and limitations, 
so choosing the best interpolation technique was 
crucial for accurate and reliable spatial mapping. 
The accuracy of interpolation depended on the 
precision of the definition of boundaries and 

contaminated areas [34]. Several studies have 
been conducted on the effectiveness of spatial 
interpolation techniques. However, the 
conclusions were not consistent. Some of them 
found that the Kriging method was superior to 
the IDW method [13], while others demonstrated 
that the Kriging method was comparable to other 
techniques [35]. To determine the best method 
for describing the distribution patterns of heavy 
metals in various environmental situations, 
several interpolation methods including their 
parameterization and validation were compared 
and evaluated in this study. The results showed 
that EBK and LP consistently provided the most 
accurate prediction of heavy metal 
concentrations in Yongchang county, which was 
consistent with the results of Kravchenko et al 
that the OK prediction accuracy was higher than 
that of the IDW in most cases [36]. Interpolation 
methods are different for different types of 
landforms. In general, simple Kriging 
interpolation is more accurate for areas 
dominated by mountains. Kriging or tensile spline 
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interpolation is more accurate for areas 
dominated by plains and terraces, while pan-
Kriging interpolation is more accurate for plains 
or basins of comparable size distribution, hills, 
and mountains [37]. In China, the scientists 
mainly adopt methods such as the single-factor 
index method, Nemero comprehensive pollution 
index method, pollution load index method, 
potential ecological risk index method, and land 
accumulation index method for the evaluation of 
heavy metal enrichment in agricultural soils [33]. 
The core principle of these diverse evaluation 
methods lies in comparing the concentration of 
pollutants in the soil with the soil environmental 
quality standards or the background value of the 
soil environment, thereby reflecting the degree 
of pollutant enrichment in the soil. Nemero index 
method is a common means of comprehensive 
assessment of environmental pollutant status, 
which considers the extreme value of the multi-
factor environmental quality index and can 
comprehensively reflect the degree of 
contamination of the factors in the environment 
of the study area and the overall environmental 
quality changes [38]. In this study, Nemero 
integrated pollution index method was employed 
to assess the heavy metal enrichment condition 
of the farmland soil within the study area. The 
evaluation outcomes consistently demonstrated 
that a minor portion of the regional soil 
presented a relatively high level of soil pollution 
risk. Specifically, the soil with a medium pollution 
level accounted for an area proportion of 
0.004%. Subsequently, an analysis of the 
pollution causes in the more severely polluted 
areas was conducted based on the spatial 
distribution map of the evaluation indices and 
discovered that there existed over 60 mineral 
deposits in Yongchang county, predominantly 
consisting of iron, copper, nickel, lead, zinc, 
cobalt, and other minerals. Among them, nickel 
reserves accounted for 80% of China's nickel 
reserves, while copper reserves were more than 
3 million tons, ranking 2nd in the country. 
Hongshanyao Town is located under Yanzhi 
Mountain with high content of zinc, nickel, 
cobalt, and copper. Agricultural soils with 
moderate and light pollution risk were mainly 

distributed around the mining site, and there was 
an enrichment condition of heavy metals in soil 
in the dense mining area. By applying GIS 
technology to study the distribution and 
pollution status of heavy metals in Yongchang 
county, strong technical support has been 
provided in key audit steps such as data 
collection, audit suspicion mining, and audit 
suspicion verification. Meanwhile, geographic 
information technology can accurately display 
the characteristics and spatial distribution of 
geographic information, and its powerful 
visualization analysis function has obvious 
advantages over traditional auditing methods. It 
also has good adaptability to various resource 
and environmental audits. In the future, 
according to the characteristics of resources and 
environment audit, further integration of 
geographic information technology combined 
with artificial intelligence, the internet, and other 
technologies can provide strong technical 
support for achieving full audit coverage. 
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