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Hearing loss (HL) impairs the ability to hear and can be caused by genetics, trauma, infections, aging, and noise 
exposure. Early and accurate diagnosis is critical for effective management. This research introduced a computer-
aided diagnosis (CAD) system which applied machine learning and magnetic resonance imaging (MRI) to diagnose 
HL. Feature extraction was conducted using a pretrained residual neural network (RNN) with subsequent 
classification performed through support vector machine (SVM) algorithms. The robustness of the performance 
of the developed model was evaluated through K-fold cross-validation method. The results demonstrated that 
the integrated RNN-SVM approach achieved high accuracy and sensitivity in distinguishing between left hearing 
loss (LHL), right hearing loss (RHL), and health control (HC). This CAD system showed significant potential in aiding 
otologists with early and precise diagnosis of hearing loss, ultimately enhancing patient care and outcomes. 
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Introduction 
 
Characterized by compromised auditory signal 
transduction from peripheral to central 
pathways, hearing loss (HL) constitutes a 
pervasive sensory disorder with substantial 
global health implications. HL can have various 
reasons including genetic predisposition, physical 
trauma, infections, aging, exposure to excessive 
noise, and other environmental factors [1]. In 
terms of severity, HL is typically classified into five 
distinct categories of mild, moderate, moderate-
severe, severe, and profound. This classification 
system provides a structured tool for 
understanding the severity of the hearing 
impairment experienced by an individual, which 

is crucial for both diagnosis and treatment 
planning [2]. For example, in case of mild hearing 
loss, some conversational speech could be heard, 
while a person suffering from profound hearing 
loss might not hear sounds at all [3]. By classifying 
hearing loss in this way, healthcare professionals 
can better investigate how it affects the daily life 
and communication abilities of the person. This 
understanding is essential to develop 
appropriate intervention measures tailored to 
the severity of the condition of each individual 
such as hearing aids, cochlear implants, or 
auditory rehabilitation programs [4]. In addition, 
this classification aids in tracking hearing loss 
progression over time, facilitating timely 
adjustments in treatment strategies and 
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enhancing overall patient care [5]. In children, 
hearing loss can strongly affect the development 
of spoken language, cognitive skills, and social 
interactions [1]. Early identification and 
intervention are essential for mitigating these 
influences and supporting language acquisition 
and educational development. In adults, 
however, hearing loss can create difficulties in 
communication, influencing social interactions 
and professional life. This can give rise to social 
isolation, depression, and decline of overall 
quality of life [6]. 
 
Magnetic resonance imaging (MRI) has become 
an essential tool to detect and understand 
structural brain changes related to hearing loss 
[7]. HL patients often present differences in brain 
structures in comparison to healthy individuals 
[1]. However, these differences could be subtle 
and challenging for otologists to identify hearing 
problems through visual inspection alone [8, 9]. 
This is where computer-aided diagnosis (CAD) 
systems become invaluable. The developed 
diagnostic tool applies deep learning to 
neuroimaging data to detect microstructural 
pathologies which are imperceptible through 
visual inspection [10]. By performing a more 
detailed and objective analysis, CAD systems 
enhance diagnostic processes, allowing for more 
accurate and timely hearing loss detection. This 
technological advancement not only aids 
radiologists in their diagnostic efforts but also 
holds promise for improving patient outcomes 
via earlier and more precise interventions. Early-
stage CAD architectures predominantly integrate 
rule-based inference engines with classical 
statistical learning models to establish 
foundational frameworks for medical image 
interpretation [11]. These techniques include 
training algorithms on MRI scans for detecting 
patterns and abnormalities indicating hearing 
loss [12, 13]. Although traditional machine 
learning provides the cornerstone of computer-
aided diagnostic systems, remarkable progress is 
still needed to effectively process the inherent 
heterogeneity of clinical radiological datasets 
[10, 14]. Contemporary deep learning 
architectures, especially convolutional neural 

networks, have significantly improved computer-
assisted diagnostics via automated feature 
extraction from volumetric brain scans with 
unprecedented precision [15]. These models can 
identify subtle structural abnormalities which 
could not be easily identified by naked eye, 
enhancing diagnostic accuracy and facilitating 
rapid intervention in hearing-impaired persons 
[16]. In developing CNN architecture, residual 
neural network (RNN) is among the most 
important milestones, enabling the effective 
training of deeper networks. He et al. developed 
residual networks (ResNets), which effectively 
countered vanishing gradient obstacles that 
critically constrained the efficacy of training in 
deep neural architectures, enabling stable 
training of deep architectures by preserving 
gradient flow across layers [17]. However, it 
generally provides poor performance as the 
network gets deeper [18]. RNNs facilitate this 
functionality by integrating residual connections, 
alternatively referred to as skip connections, 
enabling the bypassing of one or multiple 
intermediate layers within network architecture. 
Innovative skip connection mechanism enables 
stable gradient flow during deep network 
optimization, which can effectively prevent 
training deterioration while substantially 
improving feature discriminability in visual 
recognition tasks. This is because it is possible to 
develop a network with hundreds or thousands 
of layers at the same time while maintaining high 
performance and precision. One of the most 
innovative characteristics of RNNs is the 
application of residual connections, also called 
skip connections. Layered architectures can 
parameterize differential feature mappings 
relative to input states, rather than direct input-
output transformations through identity shortcut 
pathways. More precisely, RNNs are designed for 
approximating residual mappings, which are 
defined as mathematical difference between 
input activation and target output 
transformation at a given layer. The optimization 
process is significantly simplified using this 
architectural paradigm by enabling direct 
gradient flow through shortcut connections, 
effectively solving the common issue of gradient 
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vanishing in deep network architectures. 
Maximum-margin discriminative models have 
demonstrated superior performance in pattern 
recognition applications [19]. This approach 
develops geometrically optimal decision 
boundaries by maximizing inter-class separation 
within transformed feature representations. 
Critical boundary samples, also called defining 
instances, determine margin width, quantified as 
minimal distance among convex hulls of distinct 
data clusters. Through systematic margin 
optimization, the developed method enhances 
predictive robustness, achieving reliable 
performance for unseen data instances while 
alleviating overfitting risk [20]. 
 
This research aimed to harness the 
representational learning capabilities of RNNs 
while simultaneously mitigating overfitting 
limitations inherent in conventional support 
vector machine (SVM) approaches, specifically to 
enhance hearing loss detection accuracy by 
analyzing brain MRI scans. A new CAD model 
RNN-SVM for detecting hearing loss based on 
brain MRIs was proposed. A pre-trained RNN was 
developed to generate rich and complex 
representations from brain MRIs, useful for the 
identification of hearing loss. Support vector 
machine classifier was employed to differentiate 
unilateral auditory impairment from normative 
auditory cohorts through discriminative feature 
space analysis. Stratified K-fold validation was 
used to inspect the predictive accuracy of hybrid 
RNN-SVM architectures in auditory impairment 
classification compared to baseline diagnostic 
models. By using advanced representational 
learning capabilities of RNNs, this research 
addressed the critical issue of overfitting 
commonly seen in traditional SVM 
methodologies, improving the reliability and 
accuracy of auditory impairment diagnoses. The 
proposed RNN-SVM model not only enhanced 
classification of unilateral auditory conditions but 
also set a precedent for integrating deep learning 
techniques with conventional machine learning 
frameworks in medical imaging, which might give 
rise to better early detection and intervention 
strategies, ultimately benefiting patients, and 

advancing research in auditory health and 
neuroimaging. 
 
 

Materials and methods 
 
Neuroimaging repository comprised MRI images 
were obtained from the local hospitals in 
Yangzhou, Jiangsu, China through Siemens 
MAGNETOM Skyra 3T MRI scanner (Siemens 
Healthineers, Erlangen, Bavaria, Germany) with 
the scanning protocol of T1-weighted imaging to 
ensure comprehensive neuroanatomical 
examinations, which contained balanced cohorts 
stratified by auditory pathology lateralization 
(left/right unilateral impairment) with an 
auditory-intact reference group, systematically 
curated for comparative neuroanatomical 
analyses [21]. All images were acquired at the 
resolution of 176 × 256 pixel with adequate 
spatial details to support robust feature 
extraction. All procedures of this research were 
approved by IRB committee of Yangzhou 
Hospital, Yangzhou, Jiangsu, China.  
 
Residual neural network 
Architecturally, residual blocks in RNNs 
integrated sequential nonlinear transformations, 
where processed feature tensors underwent 
additive fusion with initial feature 
representations via identity mapping pathways. 
Mathematically, assuming 𝑥 as input, and 𝐹(𝑥) as 
the function representing the convolutional 
layers, the output of the residual block was as 
below. 
 
𝑦 = 𝐹(𝑥) + 𝑥                                                          (1) 
 
This method of directly adding inputs helped 
maintain gradient flow within the network, 
enabling the training of very deep networks. 
Deep residual architectures can obtain 
unprecedented accuracy in visual pattern 
recognition benchmarks, consistently exceeding 
human-level classification capabilities across 
different imaging modalities. The ability of these 
architectures to maintain accuracy with the 
increase of depth has made them popular 
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options for complex image analysis tasks, 
including those in medical imaging [22, 23]. RNN 
architecture incorporated sequential residual 
modules, each integrating convolutional 
operations with batch normalization and ReLU 
nonlinear activation layers. The output of each 
block was added to its input to generate the 
residual connection. Terminal processing stage 
integrated learnable weight matrices with 
normalized exponential transformations, 
operationalizing discriminative categorical 
assignment via probabilistic feature space 
projections. Softmax function was stated as 
follows. 
 

𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
                                                          (2) 

 
where 𝑧𝑖  was unnormalized log-odds for 
the 𝑖 diagnostic category. Using hierarchical 
feature representations from pretrained RNN, 
the diagnostic framework achieved 
discriminative auditory pathology stratification 
across lateralized impairment subtypes and 
neurotypical reference cohorts, generating an 
automated clinical decision support system for 
otological diagnostics. 
 
Support vector machine 
Mathematical derivation of maximum-margin 
decision boundaries involved constrained 
quadratic programming formulations with 
geometric constraints to ensure optimal class 
separability. In each training sample pair, where 
(𝑥𝑖 , 𝑦𝑖) denoted feature vector and 𝑦𝑖 was class 
label, SVM found the hyperplane defined as 
follows to maximize the margin. 
 
𝑤𝑇𝑥 + 𝑏 = 0                                                           (3) 
 
This was achieved by the following equation. 
 
min
𝑤,𝑏

1

2
‖𝑤‖2 , s. t. 𝑦𝑖(𝑤T𝑥𝑖 + 𝑏) ≥ 1, 𝑖 ∈  {1, 2, . . . , 𝑁}     (4) 

 
where N was the cardinality of learning instances. 
The optimal geometric separation interval (M) 
was mathematically defined through the 
constrained optimization framework as below. 

𝑀 =
2

‖𝑤‖
                                                                   (5) 

 
This mathematical equivalence showed that 
enhancing inter-class separation via geometric 
margin optimization fundamentally 
corresponded to regularizing model complexity 
through parameter space constraints ‖𝑤‖ . 
Maximum-margin classifiers used kernel-induced 
transformation to respond to nonlinear class 
separation challenges, where input patterns 
were implicitly mapped into reproducing kernel 
Hilbert spaces through similarity operators. This 
methodology circumvented explicit high-
dimensional computations using Mercer-
compliant functions—including polynomial, 
radial basis, and sigmoid mappings to calculate 
inner products in transformed feature space [24]. 
 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝐽)                                    (6) 

 
Kernel operator 𝐾 formalized pairwise pattern 
similarities through inner product evaluations in 
Hilbert spaces, eliminating explicit computation 
of implicit embedding operator 𝜙 that projected 
inputs into these enriched feature 
representations. 
 
RNN-SVM 
The developed RNN-SVM for the detection of 
hearing loss used automated feature learning 
capability of RNN and trained SVM as the 
classifier to avoid the overfitting problem since 
brain MRI dataset was small. MRI images were 
preprocessed to improve their quality and 
extract relevant features, which included 
normalization, noise reduction, and 
segmentation for the isolation of the region of 
interest (ROI) in the brain. Normalization was 
mathematically stated as follows. 
 

 𝑥′ =
𝑥−𝜇

𝜎
                                                                 (7) 

 
where 𝑥  was the original input intensity. 𝜇  was 
the statistical mean of the dataset. 𝜎  was 
standard statistical deviation. The extracted 
features were applied to train the developed 
SVM   model.   Different   kernel   functions   were 
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Figure 1. Diagram of the proposed methodology. 

 
 
evaluated for determining the best-performing 
model. SVM learned to classify MRI images into 
the following three categories including left 
hearing impairment (LHL), right hearing 
impairment (RHL), and healthy auditory (HC). The 
decision function of SVM was stated as below. 
 
𝑓(𝑥) = 𝑤𝑇𝜙(𝑥) + 𝑏                                             (8) 
 
where 𝑤 was weight vector. 𝜙(𝑥) was feature 
mapping using a kernel. 𝑏 was bias term. The 
performance of RNN-SVM was explored with 
precision and sensitivity. Cross validation was 
applied to make the model robust and 
generalizable. This hybrid framework integrated 
the technical advantages of residual networks 
and SVMs, specifically optimized for medical 
image analysis tasks such as auditory dysfunction 
identification based on brain scans. Residual 

networks addressed training challenges in deep 
architectures through cross-layer connection 
mechanisms, enabling automatic capture of high-
level discriminative features from raw data. As a 
classical classifier, SVM obtained efficient pattern 
separation by developing maximum-margin 
decision boundaries in feature space. The 
proposed method combined deep feature 
learning with statistical learning theory by using 
abstract features extracted through residual 
networks as inputs for SVM and retaining the 
ability of deep learning to parse complex patterns 
while inheriting the generalization advantage of 
SVM in small-sample scenarios. This collaborative 
strategy significantly enhanced the robustness of 
medical diagnostic systems, especially suitable 
for high-precision classification scenarios (Figure 
1). 
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Figure 2. Stratified K-fold validation protocol. 

 
 
Stratified K-fold validation protocol 
To ensure the effectiveness and generalizability 
of the proposed model, this research employed a 
stratified K-fold validation protocol for 
performance evaluation. The proposed method 
involved a systematic data partitioning and 
iterative validation process, which included that 
the original dataset was randomly divided into K 
mutually exclusive and equally sized subsets. 
Then, one subset was sequentially selected as 
validation set, while the remaining K-1 subsets 
were applied for model training, completing K 
rounds of independent training-test cycles. The 
mean values of key metrics such as accuracy and 
sensitivity from each validation round were 
calculated, which served as the final performance 
assessment benchmark for the model (Figure 2). 
Hierarchical iterative validation strategy 
effectively mitigated evaluation bias and variance 
fluctuations due to traditional single partition 
methods by reusing the entire dataset for model 
training and assessment. This approach achieved 
a more stable and representative comprehensive 
evaluation of the performance of the classifier. 
 
Performance assessment 
Various performance measures including 
confusion matrix, precision, and sensitivity were 
applied to explore the validity of the proposed 
method. This evaluation system quantified the 
diagnostic efficacy of brain MRI images using a 
multidimensional indicator system model. The 
predicted results were systematically compared 

to actual results by generating a confusion 
matrix, which organized the predictions of the 
model into four distinct categories including true 
positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN). To generate this 
matrix, the model first classified each sample in 
the dataset based on the features extracted from 
MRI images. Then, each sample was assigned to 
one of the four categories by evaluating its 
predicted and true labels. This structured 
comparison allowed for a clear assessment of the 
performance of the model, enabling the 
calculation of key metrics such as sensitivity and 
accuracy, which provided insights into the 
diagnostic capabilities of the developed model. 
The accuracy of classification was the primary 
evaluation metric and was calculated as the 
proportion of correctly classified samples out of 
the total sample size as follows. 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
                                   (9) 

 
This method intuitively represented the overall 
discriminatory power of the model. 
Supplementary metrics such as precision were 
further incorporated to construct a multi-
dimensional evaluation system to 
comprehensively validate the clinical 
applicability of the diagnostic system. Accuracy 
indicated the proportion of MRI brain images 
correctly classified into LHL, RHL, and HC. 
Sensitivity,  also  termed  recall  or  true  positive  
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Table 1. Results of the proposed RNN-SVM. 
 

Run HC Left Right Overall accuracy 

1 95.00 93.33 96.67 95.00 

2 91.67 95.00 93.33 93.33 

3 98.33 96.67 98.33 97.78 

4 96.67 91.67 95.00 94.44 

5 98.33 93.33 93.33 95.00 

6 96.67 95.00 98.33 96.67 

7 93.33 95.00 98.33 95.56 

8 95.00 93.33 96.67 95.00 

9 93.33 88.33 93.33 91.67 

10 93.33 91.67 93.33 92.78 

MSD 95.17 ± 2.28 93.33 ± 2.36 95.67 ± 2.25 94.72 ± 1.80 

 
 
rate, measured the ability of the diagnostic 
system for accurate detection of true positive 
cases, calculated as the ratio of correctly 
identified positives to all actual positive 
instances. 
  

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP+FN
                                           (10) 

 
This metric proved highly valuable to evaluate 
the proficiency of the model in detecting true 
positive cases within clinical datasets. 
 
Comparison Methods 
The proposed RNN-SVM model was compared 
with three commonly used methods for the 
detection of hearing loss including wavelet 
entropy (WE) combined with genetic algorithm 
(GA) (WE+GA), least squares support vector 
machine (LS-SVM), and improved artificial bee 
colony (IABC) to evaluate its performance. 
WE+GA method leveraged wavelet entropy 
features in conjunction with a GA to optimize 
classification process [11]. LS-SVM was a variant 
of traditional SVM that minimized least squares 
error function [18]. IABC aimed to more 
accurately and efficiently detect hearing loss 
using a nature-inspired algorithm, which 
employed discrete wavelet transform (DWT) to 
extract texture features from brain images 
followed by principal component analysis (PCA) 
to     decrease     dimensionality.     A     multi-layer 
perceptron (MLP) classifier trained using IABC 

was applied, which enhanced exploration and 
exploitation capabilities compared to traditional 
artificial bee colony (ABC) algorithms [12]. 
 
 

Results 
 

The results of 10-fold cross-validation  
The results of hearing loss classification using the 
proposed RNN-SVM model for MRI data showed 
that the proposed model demonstrated the 
consistent ability to differentiate healthy 
individuals and those with hearing impairments. 
Overall accuracy varied across the runs with the 
highest and lowest accuracies of 97.78% and 
91.67% observed in Runs 3 and 9, respectively 
(Table 1). The results indicated that, while the 
model performed well on average, there were 
some fluctuations in effectiveness, which could 
be attributed to variations in training and 
validation subsets. The mean sensitivity of each 
category was calculated as 95.17 ± 2.28% for HC, 
93.33 ± 2.36% for LHL, and 95.67 ± 2.25% for RHL, 
respectively. The results indicated that the model 
maintained a high accuracy level across all 
categories, suggesting that it was equally 
effective in identifying both hearing loss types 
and distinguishing healthy individuals. The mean 
overall accuracy of 94.72 ± 1.80% reflected the 
strong performance of the proposed model 
across all runs. This high accuracy was crucial for 
clinical applicability as it indicated that the model 
could  reliably  assist  in  diagnosing  hearing  loss 
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Table 2. Comparative analysis of the performance of mainstream technical solutions. 
 

Method HC LHL RHL Overall accuracy 

WE+GA 81.25 ± 4.91 80.42 ± 5.57 81.67 ± 6.86 81.11 ± 1.34 

LS-SVM 84.83 ± 2.54 85.17 ± 5.52 84.67 ± 3.58 84.50 ± 1.77 

IABC 95.07 98.63 98.63 97.33 

RNN-SVM 95.17 ± 2.28 93.33 ± 2.36 95.67 ± 2.25 94.72 ± 1.80 

 
 
based on brain MRI scans. Balanced performance 
across HC, LHL, and RHL categories suggested 
that RNN-SVM model could effectively support 
clinicians in making accurate diagnosis. The low 
variability observed in the accuracy enhanced the 
credibility of the model as a diagnostic tool, 
which was essential in clinical settings where 
precision was critical. 
 
Comparative analysis of different methods 
The proposed RNN-SVM model demonstrated 
good performance across all categories with high 
sensitivity for HC, LHL, RHL and robust overall 
accuracy, while IABC showed slightly higher 
sensitivity for LHL, RHL, and overall accuracy. The 
proposed RNN-SVM model performed 
comparably and significantly better than WE+GA 
and LS-SVM (Table 2). The hybrid architecture 
optimized by combining residual networks with 
SVMs achieved a classification accuracy of 94.72 
± 1.80%, proving its reliability in distinguishing 
among different categories of hearing loss. High 
sensitivity values were achieved for HC, LHL, RHL 
as 95.17 ± 2.28, 93.33 ± 2.36, 95.67 ± 2.25, 
respectively, comparing to that of WE+GA and LS-
SVM. Although IABC method demonstrated 
superior sensitivity and accuracy, the 
competitive performance of RNN-SVM was 
noteworthy given the challenges associated with 
small datasets. The slight edge seen in IABC could 
be attributed to its specific algorithmic 
enhancements or feature selection techniques 
that might not have been fully used in RNN-SVM 
approach, which presented an opportunity for 
future research to explore hybrid models or 
integrate feature selection techniques to further 
boost performance. The proposed model showed 
outstanding efficacy in capturing positive cases, 
which was crucial for clinical applications. 

Discussion 
 

The main advantage of the proposed RNN-SVM 
hybrid architecture lied in its ability to perform 
well even for samples with limited sizes. The 
combination of residual learning in RNN 
architecture and regularization capabilities of 
SVM classifier provided a balanced framework 
that maintained high generalization 
performance, which was especially crucial in 
medical imaging as the cost of misdiagnosis could 
be significant. The capability of RNN-SVM model 
to deliver precise and dependable diagnoses of 
hearing loss using MRI data held substantial 
significance for clinical practice. Accurate early 
diagnostic approaches could secure crucial time 
windows for clinical intervention, significantly 
enhancing long-term patient outcomes and 
quality of life by optimizing treatment timeliness. 
The model could be integrated into clinical 
workflows, assisting radiologists and audiologists 
in making informed decisions based on 
quantitative data. This research proposed an 
innovative diagnostic framework that integrated 
medical image analysis with deep learning for 
accurate identification of auditory function 
disorders by combining magnetic resonance 
brain scan data with machine learning 
techniques. The main architecture of the 
proposed system used a deep residual network 
for multi-scale feature extraction and combined 
SVM to construct classification decision 
boundaries. This approach effectively 
distinguished unilateral auditory damage 
(left/right) and healthy control groups, exhibiting 
superior accuracy and sensitivity metrics in 
diagnostic processes. A comprehensive K-fold 
cross-validation protocol was systematically 
implemented to ensure the efficiency of the 
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proposed method and enhance the 
generalizability of research findings. The 
empirical results derived from this rigorous 
validation framework revealed that the proposed 
computational model exhibited robust diagnostic 
capabilities with consistent performance across 
all validation folds. The developed CAD system 
represented a significant advancement in 
radiological diagnostics, offering potentials for 
augmenting clinical decision-making processes 
by precise detection of subtle neuroanatomical 
alterations associated with auditory 
dysfunctions. This technological innovation 
facilitated early intervention strategies and 
optimized therapeutic outcomes through 
improved diagnostic accuracy and decreased 
inter-observer variability in radiological 
assessments. 
 
Future research should focus on systematic 
optimization of the proposed computational 
framework to narrow its performance gap with 
current leading methodologies, especially IABC 
algorithm. This optimization endeavor 
incorporated several strategic approaches 
including implementation of Bayesian 
optimization for tuning hyperparameters to 
maximize the efficiency of the model, 
development of hybrid ensemble architectures 
combining multiple machine learning paradigms, 
and evaluation of advanced kernel mapping 
mechanisms including radial distance-based 
exponential kernels with polynomial high-
dimensional spatial projection kernels to 
enhance the discriminative abilities of SVM. In 
addition, expansion of training dataset via the 
inclusion of diverse MRI imaging data from 
multiple clinical centers and encompassing 
different demographic profiles and pathological 
variations would significantly improve the 
generalizability and diagnostic precision of the 
model. Such dataset augmentation should be 
accompanied by rigorous quality control 
protocols and standardized preprocessing 
pipelines to ensure data consistency and 
reliability. 
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