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Infectious disease transmission dynamics is an important field at the intersection of complex network science and 

epidemiology, aiming to determine disease spread patterns within populations and the key factors influencing 
these processes. All traditional homogeneous mixing models such as susceptible-infected-susceptible (SIS), 
susceptible-infected-recovered (SIR), and susceptible-exposed-infected-recovered (SEIR) assume population 
contact to be random, yet the interaction structures in real-world societies present significant heterogeneity and 
hierarchy. This research aimed to delve into infectious disease transmission dynamics in complex networks by 
developing a more realistic social-family bi-layer network model. Social and family contact structures were 
integrated to explore infectious disease transmission dynamics. The upper network simulated social contact 
networks using scale-free, small-world, and regular network models, while the lower network simulated family 
community networks. SIS, SIR, and SEIR models were applied for the simulation of disease transmission and the 
impacts of infection rate, recovery rate, and immunization strategies of random and targeted immunization were 
investigated through sensitivity analyses. The obtained results indicated that scale-free networks exhibited rapid 
epidemic spread due to their highly connected node characteristics, while small-world networks presented slower 
and more stable transmission rates. Targeted immunization proved effective in scale-free networks, while random 
immunization was more effective in family community networks. This research not only provided a novel 
theoretical perspective to understand infectious disease transmission mechanisms in complex networks but also 
laid a scientific foundation for the formulation of targeted public health intervention measures.. 
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Introduction 
 
Disease transmission models serve as essential 
tools in investigating disease transmission 
dynamics with the classic susceptible-infected-
susceptible (SIS), susceptible-infected-recovered 
(SIR), and susceptible-exposed-infected-
recovered (SEIR) models as widespread 

applications in epidemiological research. 
However, traditional disease transmission 
models generally assume random contacts within 
the population, overlooking complex network 
relationships among individuals in the real world. 
Recently, with the introduction of complex 
network theory, researchers have incorporated 
network structures into disease transmission 
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models for more accurate simulation of the 
spread of disease. Research on the evolutionary 
mechanisms of emergent infectious diseases 
mainly encompasses four categories including 
descriptive research [1], analytical research [2], 
experimental research [3], and theoretical 
research [4]. Regarding the evolutionary models 
of emergent infectious diseases, since the 
introduction of SIR compartment model by 
Kermack and McKendrick in 1926 [5], many 
researchers have proposed more realistic 
mathematical differential equations including 
the solutions and analyses of effective 
reproductive number, system dynamics models 
based on complex networks, and evolutionary 
game models. Studies on epidemics or epidemic 
processes are mainly based on compartment 
models [6, 7], which are commonly applied in 
epidemiology and modern health management 
systems. SIR model is among the most popular 
epidemiological models [6, 8], while other 
models such as exposed or asymptomatic agent 
models of SEIR and SEAIR are also employed [9-
11]. 
 
Complex networks provide a more realistic 
environment for infectious disease transmission. 
To more precisely apply prevention and control 
strategies, it is essential to develop multilayer 
networks for evolution and discussion. By 
adjusting key parameter values, the performance 
under complex multilayer network structures can 
be explored and provided reference for auxiliary 
prevention and control. Transmission dynamics 
on complex networks are important research 
topic in network science [12, 13]. A wide range of 
transmission trajectories are possible in systems 
such as infectious diseases, information, and 
rumors and can be affected by several factors 
that rely on the transmission characteristics of 
the transmitted items themselves as well as 
global network structural properties. Generally, 
classical network models including random [14], 
small-world, and scale-free networks [15] can be 
employed to evaluate the impacts of single-layer 
network structures on transmission processes. 
Currently, infectious disease transmission in 
human contact networks remains a key research 

topic in complex network transmission dynamics 
[16-18]. Complex network is a research concept 
to simplify network models of complex systems. 
Multi-layer networks are continuously updated 
based on the properties of individual network 
nodes and network edges. These networks can 
be divided into multidimensional multi-layer 
networks and dependency multi-layer networks 
based on the type of the network. 
Multidimensional multi-layer networks were 
designed to address the problem of duplicate 
edges in multiple networks arising due to the 
homogeneity of network nodes and edges in 
complex networks. Similarly, dependency multi-
layer networks were developed to address the 
issue that network nodes in complex networks 
might possess different attributes. Although 
dependency multi-layer networks do not allow 
edges among nodes in different networks, they 
allow nodes in different networks to have 
interdependent relationships. Most individual 
networks can be considered as dependency 
multi-layer networks. In multi-layer networks, 
selecting various types of networks for each layer 
results in multi-layer networks with different 
complexities [19]. With the introduction of the 
Internet to complex network theory, the research 
paradigm of complex networks can be employed 
in research in a wide variety of fields such as 
cooperative propagation model threshold study 
in a three-layer scale-free associative network 
[20]. 
 
This research aimed to explore infectious disease 
transmission dynamics in complex networks by 
constructing a dual-layer network consisting of 
social and household communities. The upper 
layer network simulated social contacts using 
scale-free, small-world, and regular networks, 
while the lower layer network simulated 
household communities. SIS, SIR, and SEIR 
models were applied to simulate disease 
transmission and the impacts of infection rate, 
recovery rate, and immunization strategies 
including random immunization and targeted 
immunization. This study provided a new 
perspective to understand infectious disease 
transmission mechanisms in complex networks 
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as well as a theoretical basis for formulating 
effective strategies for infectious disease 
prevention and control, which not only enriched 
the application of complex network theory in the 
field of infectious disease transmission but also 
provided a scientific basis for public health 
decision-making. By simulating the impacts of 
various network structures and immunization 
strategies on infectious disease spread, the 
epidemic development trends could be better 
predicted, and the resource allocation could be 
well optimized, which would formulate more 
targeted prevention and control measures.  
 
 

Materials and methods 
 
Selection and design of the upper-level network 
A dual-layer network with the upper layer 
network represented the social network of 
individuals and the lower layer network 
represented their family community network 
was adopted in this research. Three typical 
complex network models were applied for the 
upper-level social network including Barabási–
Albert scale-free network (BA model), Watts-
Strogatz small-world network (WS model), and 
regular network. The scale-free network was 
established via a preferential attachment 
mechanism, reflecting "super-spreaders" 
phenomenon in real-life social interactions, while 
small-world network introduced random 
rewiring based on the regular network, 
combining high clustering and short path 
features, and the regular network served as a 
control, adopting a uniform connection pattern. 
These three networks corresponded to various 
social contact scenarios, providing a foundation 
for the analysis of network heterogeneity 
impacts on disease transmission. A BA scale-free 
network was constructed, equally dividing the 
total number of nodes (N) based on the set edge 
number (m) for each node, ultimately presenting 
a single-layer network with each node having m 
edges. The initial number of nodes was set as m0 
= 5 and the number of edges for newly added 
nodes was adjusted as m = 4, constructing a 
network with a power-law degree distribution. A 

WS small-world network was constructed, where 
the total number of nodes (N) was set based on 
the degree of each node (k), and random 
reconnection probability (cp) was equally 
distributed among each node and other 
unconnected node. A single-layer network was 
established, where each node had a degree of k 
and a random reconnection probability of cp to 
connect with other unconnected nodes. Node 
number was set as N = 200, the initial number of 
neighbours was set as k = 4, and reconnection 
probability was p = 0.3. A regular network was 
constructed by equally dividing the total number 
of nodes (N) based on the preset degree of each 
node (k), ultimately generating a single-layer 
network with each node having a degree of k. 
Node number was set as N = 200 with each node 
fixedly connected to its nearest k = 4 neighbours. 
Python's networkx library for BA/WS model and 
custom algorithms for regular networks were 
implemented. Pymnet package was used for 
multilayer network visualization, multilayer 
network processing, scalable implementation of 
sparse networks, and various network analysis 
transformations, reading, and writing tasks. 
 
Design of the lower family community network 
To generate a family community network, it was 
necessary to create a total node number (N) 
representing households of 3, 5, and 6 members. 
By setting different probabilities, fixed nodes 
were randomly assigned to households with 
different sizes and household number was not 
fixed. During family community network 
construction, there might be instances that the 
formed final total number of households was less 
than the fixed total number set. Therefore, it was 
necessary to determine whether the set value 
had been reached. If it had, nodes were sorted 
for each household. The network edges were 
eventually set for the nodes that made up the 
households, establishing family community 
network. Family cluster network referred to the 
entire social group, where each family was an 
independent entity and the nodes of each family 
were interconnected. The number of nodes in a 
family corresponded to the number of people in 
that family and the number of nodes in different 
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families might be different or equal, meaning 
that the number of people in each family might 
vary or be the same. No connection was observed 
among families, therefore, epidemic spread 
could only occur within the family. Family cluster 
network resembled the population distribution 
formed by people in the real world at night. 
 
Basic evolutionary model of infectious diseases 
The evolutions of SIS, SIR, and SEIR on complex 
bipartite networks were investigated using a 
fundamental mathematical model that was 
developed by solving differential equations with 
the premise of a regular and homogeneous 
network with contact probability among 
individuals. This model presented an 
evolutionary pattern on the double layer 
networks by settings the developed 
mathematical model. Its parameters still used 
the parameters of the mathematical model listed 
below, but the evolution was no longer obtained 
by solving mathematical equations. Instead, it 
implemented nonlinear evolution process via the 
rules of a simulation program. 
 
(1) SIS mathematical model 
In SIS model, the population was divided into two 
groups including susceptible individuals and 
infected individuals. Infected individuals could be 
transformed into susceptible individuals through 
treatment or other external interventions. 
However, they might not be immune to the 
specific infectious disease. There was no death 
throughout the entire process. An infectious 
disease model possessing the above 
characteristics was considered as the SIS model 
and was mathematically defined as below. 
 
𝑑𝑆

𝑑𝑡
=

−𝛽∗𝐼

𝑁
∗ 𝑆 + 𝛾𝐼                                                   (1) 

 
𝑑𝐼

𝑑𝑡
=

𝛽∗𝐼

𝑁
∗ 𝑆 − 𝛾𝐼                                                    (2) 

 
where equation 1 was the variation in the 
number of susceptible individuals. Equation 2 
was the variation in the number of infected 
individuals. 𝑁 was the total number of 
individuals. 𝑆  was the initial number of 

susceptible individuals. 𝐼 was the initial number 
of infected individuals. 𝛽 was infection rate. 
𝛾 was recovery rate. 
 
(2) SIR mathematical model 
SIR model divided the population into three 
categories as susceptible individuals (S), infected 
individuals (I), and the recovered individuals who 
had antibodies after recovery. An infectious 
disease model with the above characteristics was 
an SIR model mathematically defined as follows. 
 
𝑑𝑆

𝑑𝑡
=

−𝛽∗𝐼

𝑁
∗ 𝑆                                                            (3) 

 
𝑑𝑅

𝑑𝑡
= 𝛾 ∗ 𝐼                                                                 (4) 

 
𝑑𝐼

𝑑𝑡
=

𝛽∗𝐼

𝑁
∗ 𝑆 − 𝛾 ∗ 𝐼                                                (5) 

 
where equation 3 was the changes in the number 
of susceptible individuals. Equation 4 was the 
changes in the number of recovered individuals. 
Equation 5 was the changes in the number of 
infected individuals. N was the total number of 
individuals. S  was the initial number of 
susceptible individuals. I was the initial number 
of infected individuals. R was the initial number 
of recovered individuals. 
 
(3) SEIR model 
SEIR model divided the population into four 
categories including susceptible individuals (S), 
latent individuals (E ), infected individuals, and 
recovered individuals. An infectious disease 
model exhibiting these characteristics was 
referred to as SEIR model and was 
mathematically represented as follows. 
 
𝑑𝑆

𝑑𝑡
=

−𝛽∗𝐼

𝑁
∗ 𝑆                                                           (6) 

 
𝑑𝑅

𝑑𝑡
= 𝛾 ∗ 𝐼                                                                (7) 

 
𝑑𝐸

𝑑𝑡
=

𝛽∗𝐼

𝑁
∗ 𝑆 − 𝑞 ∗ 𝐸                                              (8) 

 
𝑑𝐼

𝑑𝑡
= 𝑞 ∗ 𝐸 − 𝛾 ∗ 𝐼                                                  (9) 
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      A.                                                         B.                                                         C. 

 
 
Figure 1. The development trend chart of the model where the lower network was a home area network and the upper-layer network could be 
varied over time. A. The upper layer is a regular network. B. The upper layer is a small-world network. C. The upper layer is a scale-free network. 

The Y-axis was the number of individuals.               

 
 
where equation 6 was the change in the number 
of susceptible individuals. Equation 7 was the 
change in the number of recovered individuals. 
Equation 8 was the change in the number of 
latent individuals. Equation 9 was the change in 
the number of infected individuals. N  was the 
total number of individuals. S  was the initial 
number of susceptible individuals. E  was the 
initial number of latent individuals. I  was the 
initial number of infected individuals. R was the 
initial number of recovered individuals, q was the 
probability of a latent individual transitioning to 
an infected individual. 
 
 

Results and discussion 
 

Implementation of a two-layer network 
evolution model 
The upper and lower mathematical models 
adopted SIS model, which involved susceptible 
and infected individuals. After encountering an 
infected individual, a susceptible individual had a 
certain probability of being infected and the 
infected individual had a certain probability of 
recovering to become a susceptible individual. 
The lower network model selected a household 
community network, where the distribution of 
population was in the form of households with 
nodes within a household being interconnected 
and no connections among households. This 
feature aligned with the distribution of 
population in real-life nighttime scenarios. The 
upper network could vary including regular with 

degree of 4, small-world, and scale-free 
networks. In regular networks, all nodes had a 
degree of 4. In small-world networks, most nodes 
were not connected to other nodes, and two 
nodes might be connected through multiple 
nodes, resulting in an association. In scale-free 
networks, most nodes were connected to other 
nodes, and the degrees of nodes could be varied 
significantly. Epidemic spreads between the 
upper and lower networks and population state 
update method for the two-layer network was 
that the upper layer influenced the lower layer. 
That is, if a neighbor of a node in the upper layer 
was an infected individual, there was a certain 
probability for the infection of the node. After 
being infected, the corresponding node in the 
lower network would also be infected (Figure 1). 
The upper- and lower-level network models 
remained unchanged as scale-free and 
household community networks, respectively. 
The reason for choosing scale-free network for 
the upper-level was that it was closer to reality 
and the data simulated was more referential. The 
lower level adopted household community 
network, which aligned with the distribution of 
people in real-life nighttime scenarios. 
Mathematical models could be either SIS, SIR, or 
SEIR. SIS included two individual types in the 
model as susceptible and infected individuals. 
Susceptible individuals had a certain probability 
of being infected by contact with infected 
individuals and infected individuals had a certain 
probability of recovering to become susceptible 
individuals.  In  this  model,  the  equilibrium  state  
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 A.                                                             B.                                                             C. 

 
 
Figure 2. Variation trend diagrams of the invariant mathematical model of the double-layer network model over time. A. SIS model. B. SIR model. 
C. SEIR model. The vertical axis was the number of individuals.               

 
 
was related to the infection rate (β) and recovery 
rate (γ). When β < γ, the system eventually 
stabilized with a majority of the population being 
susceptible. Conversely, when β > γ, infected 
individuals made up the majority at equilibrium. 
The SIR model had three individual types 
including susceptible, infected, and recovered 
individuals. Recovered individuals gained 
permanent immunity to the infectious disease. At 
the final equilibrium of this model, the recovered 
population typically constituted the majority. The 
final proportions of susceptible and infected 
individuals depended on the infection rate (β) 
and recovery rate (γ). When β > γ, the infected 
population would ultimately exceed the 
susceptible population with susceptible 
population possibly reaching zero. Otherwise, 
susceptible population would outnumber 
infected individuals. However, if β < γ, the 
number of susceptible individuals was greater 
than that of infected individuals. The SEIR model 
constituted of four individual types including 
susceptible, latent, infected, and recovered 
individuals. After being infected by an infected 
individual, a susceptible individual was not 
directly converted into an infected individual but 
was instead converted into a latent individual. 
With a certain probability, latent individuals 
could convert into infected individuals, and 
infected individuals had a certain probability of 
recovering to become permanently immune 
recovered individuals. Transmission mode of this 
model was that both the upper- and lower-level 
networks transmitted the epidemic with the 
upper-level influencing the lower-level. If a 

neighbour of a node in the upper-level was an 
infected individual and if that node was infected 
by an infected individual, the corresponding node 
in the lower-level network would also be infected  
(Figure 2). 
 
Sensitivity analysis of model evolution 
The upper networks were regular network, small-
world network, and scale-free network, 
respectively. When the infection rates (β) were 0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, each model was run 20 
times to calculate the average value. The results 
showed that the infection rate (β) was gradually 
increased, and all three network-based epidemic 
models experienced significant surges in the 
number of infected individuals. However, 
comparison showed that scale-free network was 
the first to react with a very strong outbreak 
intensity, where the initial case growth process 
was close to exponential growth, leading to a 
rapid infection of most people. The small-world 
network was the last to experience an outbreak 
with the smallest outbreak intensity, but its 
growth process remained relatively balanced 
throughout the experiment, which might be 
caused by the characteristics of the network. 
When the upper-layer network was a small-world 
network, most nodes were not directly 
connected, i.e., direct contact was not possible, 
which significantly slowed down outbreak speed. 
However, when the upper-layer network was a 
scale-free network, all nodes were generally 
connected to other nodes with some nodes 
having very high degrees, meaning that they 
were  connected  to  several  other  nodes.  If such  
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      A.                                                         B.                                                         C. 

 
 
Figure 3. The development trend diagram of the model where the lower network was a family cluster network and the upper network changed 
with the infection rate (β). A. regular network. B. small-world network. C. scale-free network. The vertical axis was the number of people. 

 
 
    A.                                                           B.                                                           C. 

 
 

Figure 4. Trend chart of the development of the model where the lower network was a family cluster network and the upper network varied with 
the recovery rate (γ). A. regular network. B. small-world network. C. scale-free network. The vertical axis was the number of people  

 
 
individuals became infected, the spread occurred 
extremely rapid, resulting in very high outbreak 
speeds for the scale-free network with growth 
process being far from stable (Figure 3). Small 
differences were observed among the three 
network types in terms of growth recovery rate. 
The equilibrium point in scale-free network was 
relatively unstable, which was also caused by the 
characteristics of the scale-free network. 
Because some nodes had sufficiently high 
degrees, if this group of individuals had not 
recovered, they were connected to several other 
nodes, making it easy for the nodes connected to 
these high-degree nodes to be reinfected. 
Therefore, the curves exhibited unstable 
variations during the change process. Similarly, if 
high-degree nodes were not infected and low-
degree nodes were infected, the probability of 
other nodes being infected was relatively small 
and their infection rates were low. The variation 
trend of the regular network was relatively stable 
with  no  significant  fluctuations  occurring during 

 the change process (Figure 4). 
 
When lower network was a household 
community network and the upper network was 
a scale-free network, the results showed that the 
infection rate was gradually increased. The 
results obtained from all three models indicated 
that the epidemic became more severe, which 
could be inferred from the average number of 
infected individuals. Higher infection rates 
indicated higher average numbers of infected 
individuals at equilibrium in the model. When 
infection rate reached a certain level, the 
equilibrium state of SIS model was changed with 
almost all individuals being infected. However, 
the equilibrium states of SIR and SEIR models 
remained unaffected with the increase of 
infection rate, ultimately dominated by 
recovered individuals in both models. 
Comparison of SIR and SEIR models showed that 
variations in the number of infected individuals 
were  basically  consistent  with  slight differences  
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   A.                                                           B.                                                            C. 

 
Figure 5. Variation trend diagrams of the invariant mathematical double-layer network models with different infection rates. A. SIS model. B. SIR 
model. C. SEIR model. The vertical axis was the number of people 

 
 
   A.                                                           B.                                                            C. 

 
 
Figure 6. Variation trend diagrams of the invariant mathematical double-layer network model for different recovery rates. A. SIS model. B. SIR 
model. C. SEIR model. The vertical axis was the number of people 

 
 
in variations in the numbers of recovered and 
susceptible individuals. In SIR model, when 
infection rate reached a certain level, the number 
of recovered individuals was consistently higher 
than that of susceptible individuals. In SEIR 
model, the numbers of recovered and 
susceptible individuals crossed multiple times as 
the infection rate increased, which was the 
presence of latent individuals in SEIR model. If 
the probability of converting latent individuals 
into infected individuals was too small, the 
number of infected individuals was not changed 
significantly in a short period of time. Also, the 
fact that latent individuals did not have infectious 
capability also reduced the probability of other 
susceptible individuals contacting with infectious 
individuals. Therefore, the number of susceptible 
individuals might be decreased after the 
infection rate reached a certain level (Figure 5).  
 
When the recovery rates (γ) were 0, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6 and dynamic change mathematical 
models were SIS, SIR, and SEIR, the results 

showed that, with the gradual increase of 
recovery rate, the epidemic situations of the 
three models were improved. During the change 
process, SIS model changed relatively smoothly 
with no significant fluctuations. When recovery 
rate reached a certain level, the final number of 
infected individuals was decreased to below that 
of susceptible individuals. As recovery rate was 
increased, the final number of infected 
individuals was decreased, eventually 
approaching 0. At this point, the corresponding 
recovery rate represented the practical 
significance that such an infectious disease could 
not break out or spread and the epidemic could 
be rapidly controlled. In the change process of SIR 
model, the number of both infected and 
recovered individuals showed downward trends 
and higher recovery rates resulted in smaller 
numbers of infected and recovered individuals. In 
the change process of SEIR model, the number of 
infected individuals was slightly changed with the 
increase of recovery rate. When recovery rate 
reached    a    certain    level,     the    number    of  
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A.                                                               B. 

 
 
Figure 7.  Evolution trend diagrams of the infection rate dynamic change model in the upper and lower network layers under random immunization. 
A. upper network. B. lower network. 

 
 
susceptible individuals approached to 0 (Figure 
6), which was because susceptible individuals 
were not immediately converted into infected 
individuals after being infected, but were instead 
converted into latent individuals. Latent 
individuals could not infect other individuals, 
therefore, when recovery rate was relatively 
high, many infected individuals were cured 
within the time required for latent individuals to 
convert into infected individuals. Therefore, the 
number of infected individuals continued to 
decrease. The results suggested that the 
common point among the three models was that, 
with the increase of recovery rate, the number of 
infected individuals was continuously decreased. 
When the recovery rate was excessively high, the 
number of susceptible individuals became the 
largest in the population. 
 
Sensitivity analysis of random immune 
occurrence in upper and lower network models 
Random immunity referred to a model in which 
each node had a certain probability of acquiring 
immunity, making it unable to be infected. This 
type of immunity could occur in both the upper 
and lower layers of the network. Implementation 
of random immunity in the model was reflected 
in the disconnection of the node from other 
nodes, preventing its infection by them. SIR 
mathematical model with the upper-layer 
network model being a scale-free network and 
the lower-layer network model being a 

household community network were adopted. 
Random immunization could occur in both the 
upper and lower networks. When random 
immunization occurred in the upper-layer 
network, each random immunization targeted a 
single node. When random immunization 
occurred in the lower-layer network, each 
random immunization targeted an entire 
household. Once a node within a household was 
immunized, its neighbours were considered as 
family members. Therefore, immunizing a single 
node was equivalent to immunizing an entire 
household. Model propagation occurred 
separately in the upper and lower networks with 
the upper network influencing the lower 
network. During model state updated, if a node 
in the upper network had an infected neighbour, 
after being infected by the infected neighbour, 
the corresponding node in the lower network 
would also be infected. To better reflect the 
effect of immunization on the model, population 
size was set to 60. When Infection rates (β) were 
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, random immune 
responses occurred in both the upper and lower 
layers. The results demonstrated that, with the 
increase of infection rate, the impacts of random 
immunization occurring in both the upper and 
lower layers on the model were essentially the 
same. After infection rate reached a certain level, 
the impact of random immunization occurring in 
the upper network became more pronounced 
with    the    majority    of    individuals    eventually  
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A.                                                               B. 

 
 
Figure 8. Evolution trend diagrams of recovery rate dynamic changes in random immune systems occurring in upper and lower network model s. 
A. upper network. B. lower network.  

 
 
recovering. However, when random 
immunization occurred in the lower network, 
ultimately the number of susceptible individuals 
exceeded that of infected individuals. The 
common point of random immunization in upper 
and lower networks was that the number of 
susceptible individuals was decreased with the 
increase of infection rate. The number of infected 
individuals was gradually increased, while the 
number of recovered individuals continued to 
increase (Figure 7). The difference lied in the fact 
that, when random immunization occurred in the 
upper network and the infection rate β was too 
high, the number of infected individuals 
exceeded that of susceptible individuals. On the 
other hand, when random immunization 
occurred in the lower network and infection rate 
was too high, the number of susceptible 
individuals exceeded that of infected individuals. 
 
When recovery rates (γ) were 0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, the random immune responses occurred 
in the upper and lower layers showed that, with 
the increase of recovery rate, random 
immunization occurred either in the upper or 
lower layer. In the equilibrium state of the model, 
the number of susceptible individuals was 
gradually increased. However, when random 
immunization occurred in the lower network 
layer, the change process of the model was 
relatively smooth, and the response was 
relatively rapid. When it occurred in the upper 

network layer, the change of the model was more 
extreme, which was because, when random 
immunization occurred in a community network, 
each immunization targeted one family, whereas 
in a scale-free network, nodes had different 
degrees and therefore, the impact of each 
immunization was different (Figure 8). 
 
Sensitivity analysis of pinpoint immunization 
occurred in both the upper-layer and lower-
layer network models 
Site-specific immunization referred to selecting a 
specific point within a model to confer immunity, 
ensuring it remained uninfected. In this context, 
site-specific immunization specifically denoted 
high-level immunity, meaning that the point with 
the highest degree in the model was guaranteed 
to acquire immunity. Implementation method in 
the model involved traversing to identify the 
point with the highest degree and then, removing 
all its connections, turning it into an isolated 
point, thus achieving the effect of being 
uninfected. In the mathematical model SIR, the 
network model was consisted of an upper layer 
scale-free network where most nodes were 
connected and had different degrees and a lower 
layer family cluster network where the number 
of most family nodes varied, meaning most 
nodes had different degrees. When targeted 
immunization occurred within the cluster 
network, all nodes in the family of the selected 
node  acquired  corresponding  immunity,  that is,  
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Figure 9. Trend diagrams of infection rate change model with targeted immunization occurring in both upper and lower network layers. A. fixed-
point immunization in the upper network. B. fixed-point immunization in the lower network.  

 
 

    A.                                                 B. 

 
 
Figure 10. Trend diagrams of development for fixed-point immunization occurring in the upper and lower network models. A. random 
immunization in the upper network. B. random immunization in the lower network.  

 
 
all nodes were converted into isolated points. 
When infection rates (β) were 0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, targeted immunization occurred in the 
upper and lower layers, and the changing 
characteristics of infectious disease evolution 
models demonstrated that, with the increase of 
infection rate, targeted immunization occurred in 
both the upper and lower networks and model 
change trends were basically consistent. In 
addition, model changing process was not 
smooth, which was related to the nature of 
targeted immunization. When targeted 
immunization occurred in the lower network, 
once the infection rate reached a certain level, 
the number of susceptible individuals gradually 
exceeded that of infected individuals. However, 
when targeted immunization occurred in the 
upper network, once the infection rate reached a 

certain level, the number of susceptible 
individuals was always lower than that of 
infected individuals (Figure 9). When recovery 
rates (γ) were 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
targeted immunization occurred in the upper and 
lower layers, and the changing characteristics of 
infectious disease evolution models showed that, 
when recovery rate was equal to 0, a significant 
difference was observed in the occurrence of 
targeted immunization between the upper and 
lower layers. Recovery rate of 0 indicated that 
infected individuals could not recover and the 
nodes with the highest degrees could acquire 
immunity only through targeted immunization. 
After the model reached equilibrium, the 
infection level in scale-free networks was lower 
than that in home area networks. The reason for 
this was that, in scale-free network, some nodes  
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Figure 11. Development trend diagrams of the upper network model where targeted and random immunizations occurred, respectively. A. fixed-
point immunization in the upper network. B. random immunization in the upper network. 

 
 
had very high degrees. If the nodes with the 
highest degrees were immunized, this could have 
a significant positive effect on epidemic. 
However, in household community network, the 
number of individuals in each household ranged 
from 4 to 6 and the positive effect of targeted 
immunization was relatively smaller than that of 
scale-free network. Therefore, when the 
recovery rate equalled zero, the infection level in 
scale-free networks remained relatively low. As 
the recovery rate increased, both layers 
exhibited consistent trends, showing a gradual 
improvement in the epidemic situation (Figure 
10). 
 
Random and targeted immunizations occurring 
in the sensitivity analysis of the upper-layer and 
lower-layer network models 
(1) Fixed-point and random immunizations 
occurring in the upper network 
When random immunization occurred in the 
upper layer network, model change trend was 
more rapid, and epidemic outbreak duration was 
relatively longer than targeted immunization, 
making the time required for the model to reach 
equilibrium longer (Figure 11). The reason for this 
was that random immunization occurring in a 
scale-free network had a certain probability of 
encountering nodes with higher degrees. If such 
a node was immunized, it had a strong positive 
effect on the epidemic. However, targeted 
immunization occurring in a scale-free network 

definitely had a strong positive effect on the 
epidemic. 
 
(2) Fixed-point and random immunizations 
occurring in the lower network layer 
When random and targeted immunizations 
occurred within the family community network, 
network model change trend was more rapid and 
pronounced for random immunization, while 
that for targeted immunization was relatively 
slower and of shorter duration (Figure 12). The 
reason for this was that targeted immunization 
could achieve full immunization in households 
with the highest number of family members, 
while random immunization achieved full 
immunization in a household randomly. 
Compared with random immunization, targeted 
immunization resulted in a relatively lower peak 
infection level. 
 
 

Conclusion 
 
This research investigated the evolutionary 
processes of disease transmission models based 
on a dual-layer network and explored 
transmission dynamics of infectious disease in 
complex networks. The upper layer network 
simulated social contacts using scale-free, small-
world, and regular networks, while the lower 
layer network simulated household 
communities.  The  research  employed  SIS,  SIR, 
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Figure 12. Development trend diagrams of random and targeted immunizations occurring in the lower-layer network model. A. random 
immunization in the lower network. B. targeted immunization in the lower network.  

 
 
and SEIR models for the simulation of disease 
transmission and evaluated the influences of 
infection rate, recovery rate, and immunization 
strategies including random and targeted 
immunizations through sensitivity analyses. The 
results showed that scale-free networks 
exhibited rapid epidemic spread due to their 
highly connected node features with significantly 
lower transmission thresholds compared to 
traditional models, while small-world networks 
had slower and more stable transmission rates. 
Targeted immunization significantly inhibited 
epidemic spread in scale-free networks, while 
random immunization was more effective in 
household community networks. The findings of 
this research provided a new insight to 
understand infectious disease transmission 
mechanisms in complex networks and offered a 
theoretical basis to formulate effective strategies 
for the prevention and control of infectious 
diseases. 
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