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Single-cell RNA sequencing (scRNA-seq) technology has revolutionized the understanding of cellular 
heterogeneity by enabling the detailed analysis of individual cell transcriptomes. Traditional analysis methods like 
Scanpy rely on feature selection and dimensionality reduction, which may introduce bias and overlook subtle 
biological signals. In contrast, deep learning models like scFoundation provide a data-driven approach, processing 
the entire gene set to capture complex molecular patterns without manual intervention. This study compared the 
performance of scFoundation and Scanpy using publicly available liver cirrhosis scRNA-seq data, which profiled 
over 100,000 single cells from healthy and cirrhotic liver tissues. The results showed that both methods produced 
comparable cell type annotations with scFoundation showing a slightly higher Adjusted Rand Index (ARI) of 0.977 
than that of 0.962 from Scanpy, demonstrating the model's potential to match or surpass classical methods in 
some cases. The results were additionally confirmed that there were no biases with donor clinical condition or 
sample ID. The findings of this research suggested that AI-based models like scFoundation could enhance single-
cell RNA-seq analysis, offering robust and scalable solutions while uncovering finer biological structures within 
complex datasets. 
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Introduction 
 
Single-cell technology has transformed modern 
biology by enabling the high-resolution analysis 
of individual cells, thereby revealing 
heterogeneity hidden in bulk assays [1]. Its 
applications now extend from plants to human 
tissues with innovations such as digital 
polymerase chain reaction (PCR) for single-cell 
detection and refined microenvironment 

profiling in oncology [2-4]. Technical advances in 
precise cell isolation further underpin these gains 
[5]. The approach has delivered breakthroughs 
across many disciplines. In cancer research, it 
uncovers novel biomarkers and lineage 
trajectories [6], while, in immunology and 
metabolism, it illuminates emergent cellular 
properties [7], and in hepatology, it aids early 
hepatocellular carcinoma diagnosis [8]. 
Together, these studies underscore the method’s 
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broad utility. The processing and analysis of 
single-cell data typically involves several key 
steps including preprocessing, dimension 
reduction, clustering, annotation, and 
visualization.  
 
Scanpy is one of the widely used analysis 
pipelines for this purpose [9]. In Scanpy, feature 
selection is used to reduce the dimensionality of 
the data by selecting the most variable genes 
across cells. This step is essential because 
working with all genes simultaneously can be 
computationally expensive and may introduce 
noise, leading to less accurate downstream 
analyses. The selection process inherently 
introduces bias as it prioritizes certain genes over 
others based on predefined criteria. While this 
approach simplifies the analysis and focuses on 
the most informative features, it risks 
overlooking genes that may be biologically 
relevant but do not exhibit high variability in the 
data. This bias can affect downstream results 
such as clustering or differential expression 
analysis by potentially missing subtle or rare 
signals that are crucial for understanding specific 
biological processes or identifying rare cell types. 
Deep-learning methods offer a compelling 
alternative. Convolutional networks can 
automatically detect patterned single cells in 
imaging datasets [10], while more general 
frameworks learn complex, nonlinear gene-
expression relationships directly from full 
transcriptomes [11, 12]. Multimodal 
architectures integrate multi-omics layers [13], 
and recent studies highlight how such models are 
reshaping single-cell analysis [14]. Crucially, 
models like scVI and the large-scale foundation 
model scFoundation eliminate manual feature 
selection by training on complete gene sets [15]. 
Large-scale pretrained models have 
revolutionized natural language processing, so is 
its application in life sciences [16]. To address the 
challenges imposed by traditional single-cell 
analysis methods, deep learning models were 
developed. scFoundation stands as the largest 
model of its kind as it’s trained on over 50 million 
human single-cell transcriptomics data with more 
than 100M parameters tuned. Therefore, 

scFoundation captures complex molecular 
features across all known cell types and, in 
theory, should achieve better performance in 
various downstream tasks. 
 
Liver cirrhosis is a severe condition characterized 
by extensive fibrosis, leading to significant 
morbidity and mortality worldwide. This research 
utilized data from a published study that profiled 
the transcriptomes of over 100,000 single cells 
from both healthy and cirrhotic human liver 
tissue to qualitatively and quantitatively evaluate 
the performance of the self-supervised learning 
model scFoundation against the traditional 
Scanpy pipeline, which required manual input. By 
comparing cell type annotations generated by 
scFoundation and the traditional Scanpy pipeline, 
the performance of both approaches in 
functional analysis was evaluated to assess how 
effectively each method identified distinct 
cellular niches between healthy and diseased 
liver cirrhosis samples. This research provided 
deeper insights into the differential cellular 
environments associated with disease 
progression. 
 
 

Materials and methods 
 
Data sources 
The single-cell transcriptomic dataset of human 
liver cirrhosis was downloaded from the National 
Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO) (Bethesda, MD, 
USA) under the accession number of GSE136103. 
A total of about 220 GB of raw FASTQ files and 
5.6 GB of processed gene-cell count matrix 
(HDF5) were retrieved from GEO 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.c
gi?acc =GSE136103). The matrix contained 101, 
370 single cells from ten human liver samples 
with five healthy donors and five cirrhotic 
patients covering 33,694 expressed genes. After 
quality control that the cells demonstrated 100 – 
4,000 detected genes, < 5 % mitochondrial reads, 
and genes detected in ≥ 3 cells, 97,842 cells and 
21,317 genes were retained for downstream 
analysis.  
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Data preprocessing and quality control 
Gene symbols were first annotated against 
curated dictionaries to identify mitochondrial 
(MT-), ribosomal (RPL/RPS-) and hemoglobin 
(HB-) genes, which served as quality-control (QC) 
markers. For every cell, three QC metrics were 
computed including the number of detected 
genes (nGenes), total UMI counts (nCounts) and 
the percentage of reads mapping to 
mitochondrial genes (pct-MT). Violin and scatter 
plots of these metrics guided the empirical 
thresholds used for filtering. Cells were retained 
only when 100 ≤ nGenes ≤ 4,000 and pct-MT ≤ 5 
%, while genes expressed in fewer than three 
cells were removed, which eliminated low-
complexity droplets, potential multiplets, and 
transcripts dominated by technical noise. The 
remaining counts were normalized to a library 
size of 10,000 per cell and log1p-transformed to 
stabilize variance. Highly variable genes (HVGs) 
were selected by ranking all genes on mean 
expression and dispersion, retaining those with 
0.0125 ≤ mean ≤ 3 and dispersion ≥ 0.5 to provide 
the most informative feature subset. To minimize 
technical effects, linear regression was applied to 
each gene to remove contributions from nCounts 
and pct-MT, after which residuals were z-scored 
to unit variance with values exceeding ±10 SD 
clipped. Principal component analysis (PCA) on 
the scaled HVG matrix revealed an elbow at the 
tenth component as PC1-PC5 explained 4.3%, 
3.6%, 2.7%, 1.9%, and 1.4% of the total variance, 
respectively, while the first ten PCs together 
accounted for 17.8%. These ten PCs were 
retained for construction of the k-nearest-
neighbor graph underlying Leiden clustering and 
for subsequent uniform manifold approximation 
and projection (UMAP) visualization. 
 
Selection of highly variable genes and data 
scaling 
Highly variable genes were critical for 
downstream analysis and were identified based 
on thresholds for mean expression and 
dispersion. These genes were visualized and used 
to refine the dataset for dimensionality 
reduction. The dataset was then adjusted by 
regressing out unwanted sources of variation 

including total counts and mitochondrial gene 
content followed by scaling to unit variance while 
clipping extreme values. 
 
Dimensionality reduction and clustering 
PCA was performed using Scikit-learn v1.3.0 
(https://scikit-learn.org) to reduce 
dimensionality with the top 40 components 
selected for neighborhood graph construction. 
Clustering was carried out using Leidenalg 
v0.10.2 wrapped around igraph v0.10.8 
(https://github.com/vtraag/leidenalg) to identify 
distinct cell populations. The clustering results 
were visualized using Umap-learn v0.5.5 
(https://github.com/lmcinnes/umap), providing 
a two-dimensional representation of the data. 
 
Annotation comparison and confusion matrix 
analysis 
To evaluate the clustering results, a confusion 
matrix was constructed to compare Scanpy-
generated clusters using Scanpy v1.10.1 
(https://github.com/scverse/scanpy) to pre-
existing lineage annotations. This matrix was 
visualized using heatmaps to assess the 
correspondence between clusters. Cell types 
were annotated based on the dominant 
assignment in each cluster and mapped back to 
the dataset. Adjusted rand index (ARI) was 
calculated to quantify the agreement between 
Scanpy-annotated clusters and original 
annotations. 
 
Visualization and final annotation 
Final UMAP visualizations were created to 
compare Scanpy-derived cell type annotations 
with the original lineage annotations. Heatmaps 
were generated to visualize the confusion matrix, 
highlighting areas of strong agreement or 
divergence between methods. This analysis 
provided a robust framework for benchmarking 
clustering and annotation accuracy in single-cell 
data analysis. 
 
 

Results and discussion 
 

To  enable  a  systematic,  like-for-like  evaluation, 

https://scikit-learn.org/
https://github.com/vtraag/leidenalg
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A.                                                                                             B. 

                         
 
Figure 1. Comparative UMAP visualization of Leiden clustering results. A. Scanpy workflow: application of the Leiden algorithm to the PCA-derived 
embedding delineated 37 transcriptionally distinct clusters, each corresponding to a putative cell type or lineage and forming well-segregated cell-
type groupings. B. scFoundation workflow: using identical clustering parameters on the scFoundation latent space yielded 43 clusters, revealing 
additional transcriptional diversity and finer subdivision of cell populations within the same dataset. 

 
 
results produced with the standard Scanpy 
pipeline were juxtaposed with those derived 
from scFoundation embeddings at each stage of 
the workflow including model-based clustering, 
marker-guided cluster annotation, and 
quantitative assessment of the annotated 
partitions. Identical parameter settings and 
marker panels were retained across pipelines, so 
that any divergence in outcome could be 
ascribed exclusively to the underlying embedding 
strategy. 
 
Model-based clustering 
After applying uniform preprocessed 
parameters, Leiden clustering was performed on 
the principal-component manifold generated by 
Scanpy and on the scFoundation latent space, 
respectively. The resulting cluster structures 
were reported together with their 
dimensionality-reduction maps, providing the 
baseline on which downstream biological 
interpretation was built. 
 
(1) Scanpy workflow 
By using 10 nearest neighbors and the first 40 
principal components, the Leiden algorithm 

resolved 37 distinct clusters (Figure 1A). The 
UMAP projection displayed well-separated 
groups that corresponded to major immune and 
stromal lineages reported in the source study. 
 
(2) scFoundation workflow  
After generating low-dimensional embeddings 
with the scFoundation API processed in < 1,000-
cell batches, an identical Leiden configuration 
yielded 43 clusters (Figure 1B). The additional 
clusters represented a finer partitioning of the 
cellular landscape, suggesting improved 
sensitivity to subtle transcriptional differences. 

 
Marker-driven cluster annotation  
Canonical lineage markers were employed to 
translate purely computational clusters into 
biologically interpretable cell types. The same 
gene panel, detection thresholds and dot-plot 
visualisation strategy were applied to both 
embeddings so that any disparity in annotation 
could be traced exclusively to the upstream 
clustering step. 
 
(1) Scanpy workflow 
Among the 37 Leiden clusters obtained from the 
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Figure 2. Marker gene landscape of cell clusters. A. Expression profiles of canonical marker genes across clusters. The horizontal axis denotes 
marker genes, and the vertical axis represents cluster IDs. Dual encoding by dot size (fraction of cells expressing the gene) and color intensity (mean 
expression level) revealed molecular heterogeneity among clusters. B. Cell-type annotation based on marker gene signatures. Clusters were 
assigned to specific cell types by matching expression patterns against established cellular signatures. Dot size and color intensity followed the 
same encoding rules, collectively providing visual evidence for cell identity assignment. 

 
 
Scanpy principal-component manifold, 11 major 
lineages were identified. Macrophage identity 
was assigned to clusters 4, 11, 12, 15, and 22 
because all five groups displayed robust MNDA, 
CD163, and MS4A7 expression. Of these, cluster 

12 showed the strongest MS4A7 and CD163 
signals, pointing to a tissue-resident phenotype. 
Cluster 30 was annotated as plasmacytoid 
dendritic cells owing to its pronounced CLEC4C 
and LILRA4 expression. Innate lymphoid cells 



Journal of Biotech Research [ISSN: 1944-3285] 2025; 22:300-309 

 

305 

 

were recognized in clusters 1 and 5 on the basis 
of KLRF1 enrichment, whereas cluster 27 
consisted of actively cycling cells marked by high 
MKI67 and TOP2A. The T-cell compartment 
comprised several CD2-positive clusters that 
further segregated into helper and cytotoxic 
subsets according to CD3D co-expression with 
CD4 or CD8A. Cluster 13, characterized by 
elevated CD79A, represented the B-cell lineage, 
while plasma cells localized to clusters 10, 16, and 
17, distinguished by strong EGFL7 and 
immunoglobulin transcripts. Mast cells were 
confined to cluster 35, which expressed TPSAB1 
and CPA3, and epithelial cells were concentrated 
in cluster 18, marked by KRT19 and SOX9. 
Hierarchical clustering of both genes and clusters 
reinforced these assignments that macrophage 
clusters formed a tight branch, which was clearly 
segregated from endothelial and epithelial 
signatures, yielding a coherent overview of 
lineage distribution in the Scanpy embedding 
(Figure 2A). 
 
(2) scFoundation workflow  
Applying the identical marker panel to the 43 
Leiden clusters derived from the scFoundation 
latent space not only reproduced every major 
lineage detected with Scanpy but also exposed 
additional transcriptional states. Macrophage 
diversity was partitioned into 8 clusters. Tissue-
resident macrophages appeared in clusters 9, 24, 
and 33, whereas inflammatory macrophages 
with elevated IL1B, NLRP3, and SPP1 dominated 
clusters 6 and 19. Two small clusters of 31 and 37 
selectively expressed MHC-II genes such as HLA-
DRA and HLA-DRB1, suggesting antigen-
presenting macrophages, and cluster 41 co-
expressed APOE and LGALS3, consistent with a 
lipid-handling programme. Innate lymphoid cells 
separated into three transcriptionally distinct 
groups including cluster 2 showing TBX21 and 
IFNG expression characteristic of ILC1, cluster 17 
carrying the RORC, IL23R, and AHR signature of 
ILC3, and cluster 29 retaining high KLRF1 with low 
cytokine levels, corresponding to a quiescent ILC 
pool. Epithelial heterogeneity was similarly 
refined. Basal epithelial cells in cluster 28 
displayed KRT5 and TP63, secretory epithelial 

cells in cluster 38 up-regulated MUC1, KRT8, and 
EPCAM, and a rare proliferative subset in cluster 
42 co-expressed KRT19 with MKI67 and TOP2A, 
revealing an actively cycling epithelial 
compartment that had not been resolved in the 
Scanpy analysis. The T-cell compartment 
expanded to 12 clusters including a CCR7-high 
naïve subset (cluster 4) and a CD8A-positive, 
GZMB-positive cytotoxic subset (cluster 12). B 
cells were found in clusters 5 and 20, while three 
plasma-cell clusters of 11, 26, and 36 exhibited a 
gradient of XBP1 and PRDM1 expression 
indicative of progressive plasmablast maturation. 
A plasmacytoid dendritic-cell cluster (cluster 23), 
a mast-cell cluster (cluster 35), and an 
endothelial cluster (cluster 30), which expressed 
PECAM1 and VWF, were recovered with high 
fidelity (Figure 2B). Hierarchical clustering of the 
gene-by-cluster matrix corroborated these 
stratifications, where inflammatory and resident 
macrophage clusters segregated from one 
another, basal and secretory epithelial clusters 
formed separate branches, and naïve versus 
effector T-cell subsets were clearly resolved. 
Thus, the marker-guided annotation based on 
scFoundation embeddings not only recapitulated 
all principal cell lineages but also revealed 
previously hidden transcriptional sub-states, 
underscoring the superior resolving power of the 
learned representation. 
 
Quantitative assessment of annotated 
partitions 
The accuracy of the annotated cluster solutions 
was evaluated against the published ground-
truth labels through both visual inspection of 
overlapping heat-maps and calculation of the 
adjusted rand index. These metrics quantified the 
degree to which each workflow reproduced 
established cell-type boundaries, thereby 
providing an objective measure of biological 
fidelity. 
 
(1) Scanpy workflow 
The UMAP annotated with Scanpy labels (Figure 
3A-a) was visually concordant with the reference 
map reported in the original publication (Figure 
3A-b).    Major    lineages    occupied    comparable 
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A     scFoundation_celltype                      Annotation from original paper 

 
 
B     scFoundation_celltype                      Annotation from original paper 

 
 
Figure 3. Concordance between cell-type annotations of this study and the original study. A. Side-by-side evaluation of the first dataset. (a) UMAP 
embedding colored by the cell-type labels assigned in this study, revealing well-segregated clusters of T cells, macrophages (MPs), B cells, ILCs, 
plasmacytoid dendritic cells (pDCs), and others. (b) Corresponding UMAP from the original publication with its initial annotations, visually mirroring 
the cluster structure in panel A. (c) Heatmap of cell-type overlap between the two label sets, quantified by ARI of 0.962. B. Benchmarking on the 
second dataset. (a) UMAP plot displaying the cell-type assignments produced in this study. (b) UMAP from the original work showing the author-
provided labels. (c) Overlap heatmap between the two annotations, yielding an ARI of 0.977.  

 
 
regions, and inter-cluster boundaries were 
largely preserved. The quantitative overlap 
matrix (Figure 3A-c) exhibited a pronounced 
diagonal, and the resulting ARI of 0.962 
confirmed near-perfect agreement. Off-diagonal 
elements were confined to small macrophage 
and epithelial subclusters, indicating that minor 
over-merging rather than misclassification 
accounted for most discrepancies. Together, the 
qualitative and quantitative evidence validated 
the robustness of the Scanpy-based 
preprocessing and marker-driven annotation 
protocol. 
 
(2) scFoundation workflow 
The UMAP generated from scFoundation 
embeddings and annotated with the same 
marker schema (Figure 3B-a) not only 

recapitulated the global structure of the 
reference map (Figure 3B-b) but also delineated 
additional intra-lineage variation, particularly 
within the macrophage and epithelial 
compartments. The corresponding overlap 
heatmap (Figure 3B-c) displayed an even sharper 
diagonal than that of the Scanpy analysis, yielding 
an ARI of 0.977. This increase reflected two 
complementary improvements including a 
reduction in off-diagonal discordance for 
previously merged macrophage subsets and finer 
subdivision of epithelial states without 
generating spurious cross-lineage assignments. 
Importantly, every lineage present in the 
reference annotation was recovered with ≥ 95 % 
cell-wise fidelity, underscoring that the enhanced 
granularity did not compromise biological 
accuracy.   While   both   pipelines   achieved   high 
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Figure 4. Comparison of cell-type annotations between Scanpy and scFoundation. The heatmap illustrated the overlap between cell-type 
annotations generated by the two methods with an ARI of 0.965, indicating strong agreement and consistency in clustering results. 

 
 
concordance with the published labels, the 
scFoundation-based workflow attained superior 
alignment and resolved additional biologically 
meaningful sub-clusters, highlighting the value of 
learned embeddings for precise single-cell 
stratification. 
 
Resolution of fine-grained transcriptional states 
The extent to which each embedding could unveil 
sub-lineage heterogeneity was investigated. 
Differential gene-expression analyses and 
hierarchical clustering were used to determine 
whether additional, biologically interpretable 
states such as inflammatory versus resident 
macrophages or proliferative epithelial subsets 
were selectively resolved. The findings illustrated 
the practical implications of embedding choice 
for discovering previously obscured cellular 
programs. To determine whether the two 
analytical pipelines yielded comparable 
biological conclusions, the cell-type labels 
produced by Scanpy were directly contrasted 
with those inferred from the scFoundation 
embedding (Figure 4). The resulting confusion 

heat-map was dominated by a near-perfect 
diagonal with each of the twelve major lineages 
including macrophages, plasmacytoid dendritic 
cells, innate lymphoid cells, T cells, B cells, plasma 
cells, mast cells, endothelial cells, mesenchymal 
cells, mesothelial cells, hepatocytes, and 
cholangiocytes being mapped almost exclusively 
to its counterpart in the alternative analysis. An 
ARI of 0.965 placed the concordance within the 
“almost perfect” range. Off-diagonal signal 
remained confined to minor sub-populations 
that scFoundation subdivided more finely-
principally inflammatory versus resident 
macrophage states and proliferative epithelial 
subsets, whereas Scanpy merged these into 
single clusters. No lineage detected by one 
method was absent from the other, indicating 
that observed differences were restricted to 
cluster granularity rather than lineage presence 
or absence. The effect of inter-individual 
variability and clinical status on this concordance 
was subsequently examined. When the 
scFoundation UMAP was colored by donor 
condition (healthy versus diseased) or by sample 
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         A. Cell type   B. Condition                      C. Sample ID 

 
 
Figure 5. Robustness of cell-type annotations across clinical conditions and sample IDs. A. UMAP plot showing cell-type annotations generated by 
scFoundation. B. Annotations stratified by donor clinical condition. C. Annotations stratified by sample ID.  

 
 
identifier, all clusters remained compositionally 
mixed as no cluster being dominated (> 75 %) by 
a single condition or sample. A χ² test of 
independence confirmed that cell-type 
assignment was not significantly associated with 
either metadata variable with P > 0.05 for all 
lineages after Benjamini-Hochberg correction 
(Figure 5). The results demonstrated that the 
consistency in annotations between Scanpy and 
scFoundation was not influenced by donor 
clinical condition or sample ID, confirming the 
robustness of the conclusions across different 
embedding methods and patient characteristics. 
Accordingly, the high Scanpy-scFoundation 
agreement was retained across heterogeneous 
patient backgrounds, ruling out confounding by 
donor-specific batch effects. The heat-map 
overlap, the ARI of 0.965, and the condition 
agnostic distribution of cells collectively 
demonstrated that the two embedding strategies 
were effectively interchangeable at the level of 
broad cell-type identification with scFoundation 
providing additional resolution without 
compromising cross-sample robustness. 
 
 

Conclusion 
 
The benchmark of the deep-learning framework 
scFoundation against the classical Scanpy 

pipeline on liver-cirrhosis scRNA-seq data 
showed that AI-based single-cell models were 
already capable of matching, and in some 
respects, surpassing conventional analyses. Both 
workflows recovered nearly identical cell-type 
annotations, yet scFoundation achieved a slightly 
higher concordance with the original labels (ARI 
≈ 0.97), indicating that a large pretrained model 
could reproduce established biological insights 
without manual feature engineering. Moreover, 
the UMAP embeddings derived from 
scFoundation revealed finer transcriptomic 
structures that were not apparent in the Scanpy 
results, hinting at previously unrecognized 
cellular states linked to cirrhotic remodeling. 
While these additional patterns might represent 
bona-fide biology, they could also reflect 
amplified batch effects, therefore, orthogonal 
validation such as spatial transcriptomics or 
protein level assays remained essential to 
confirm their biological relevance. The 
advantages of scFoundation extended beyond 
accuracy. Its end-to-end architecture eliminated 
dataset-specific preprocessing, thereby lowering 
the analytical barrier for non-computational 
laboratories and improving reproducibility across 
studies. Nonetheless, three practical limitations 
currently restrict wider adoption, which include 
that the public API caps the number of cells that 
can be processed in a single request, limiting 



Journal of Biotech Research [ISSN: 1944-3285] 2025; 22:300-309 

 

309 

 

scalability for large consortia datasets. Local 
deployment demands high-end GPUs and 
specialized expertise that many wet-lab 
environments lack. The model exhibits sensitivity 
to batch effects, underscoring the need for 
intrinsic correction mechanisms. Until these 
challenges are resolved, Scanpy remains a cost-
effective and accessible alternative for many 
users. scFoundation exemplifies the 
transformative potential of deep-learning 
foundation models in single-cell genomics, 
offering streamlined workflows and enhanced 
resolution, yet its full promise will be realized 
only after improvements in batch robustness, 
computational efficiency, and cloud-native 
accessibility broaden its reach to the wider 
biomedical community. 
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