
Journal of Biotech Research [ISSN: 1944-3285] 2025; 22:327-339 

 

327 

 

RESEARCH ARTICLE 

 
Retinopathy diagnosis technology based on pathological data cluster 
analysis 
 
Xinyu Xiao1, *, Yongfeng Qin2, Meng Jiang1 
 
1School of Medical Technology, 2School of General Education, Wuzhou Medical College, Wuzhou, Guangxi, 
China. 
 
 
Received: April 3, 2025; accepted: August 22, 2025. 

 
 
With the increasing awareness of people's health, retinopathy has become the focus of medical attention because 
of its high incidence rate and serious harm. However, the traditional diagnostic techniques for retinal cellopathy 
have the problem of poor accuracy. To improve the accuracy of retinopathy diagnosis, this study proposed a 
diagnostic technique for retinal cellopathy based on pathological data cluster analysis. This technology 
constructed a retinopathy diagnosis network using feature maps of constant size, avoiding the situation of 
ignoring small blood vessels during down sampling operations. The importance of retinal vessels in the diagnosis 
of retinopathy was analyzed, and a diagnostic network integrating the characteristics of retinal vessels was 
designed to achieve the retinopathy diagnosis. The results showed that the average diagnostic accuracy rate of 
the proposed method in ten experiments reached 93.82%, which was significantly better than that of traditional 
methods. The proposed retinopathy diagnosis technique based on pathological data clustering analysis could 
improve the diagnostic accuracy of retinopathy. This study provided a new technological means for the accurate 
diagnosis of retinopathy, which was of great significance for promoting the development of related medical 
diagnostic techniques. 
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Introduction 
 
The improvement of social quality of life has 
made people pay more attention to physical 
health. At present, cataract, glaucoma, turbid 
vitreous, and other diseases have become one of 
the main diseases that damage human eye 
health. In terms of retinopathy, as of 2013, the 
World Health Organization pointed out that the 
number of retinopathy patients worldwide 
reached 347 million, and the number of 
retinopathy patients in most countries was on 
the rise with 187 million people still undiagnosed. 

Eighty percent of patients with retinopathy come 
from low- and middle-income countries. 
Complications such as blindness and fundus 
hemorrhage caused by retinopathy greatly 
endanger the quality of patients’ life. However, 
the current diagnostic techniques based on 
image processing have low accuracy and are 
difficult to handle complex data. The traditional 
machine learning methods have cumbersome 
algorithms and insufficient flexibility. Moreover, 
there is a lack of unified standards for measuring 
digital indicators of fundus blood vessels. These 
drawbacks have limited the development of 
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diagnostic techniques for retinopathy [1]. 
Although the current diagnosis of retinal diseases 
benefits patients, there are still many challenges. 
In the image processing of retinopathy, due to 
the interference of vascular features such as 
optic disc, bleeding, and background texture, the 
system often finds it difficult to extract accurate 
vascular network structures. Meanwhile, there is 
no unified medical standard for the 
measurement of fundus vascular digital 
indicators [2]. The current diagnosis of 
retinopathy is mostly based on a small number of 
pictures of machine learning method diagnosis, 
which lacks robustness, not suitable for a large 
number of complex data. In addition, retinopathy 
image segmentation still faces many challenges. 
The contrast between the blood vessels and the 
background is weak, the arterial blood reflex is 
strong, and the edges are blurred, which lead to 
the large blood vessels being easily 
missegmented. Further, the illumination is 
affected by camera parameters, shooting 
conditions, and the characteristics of the 
retinopathy itself, which increases the difficulty 
of vascular segmentation. The image 
components are also complex. In normal images, 
the optic disc and background textures are easily 
misjudged as blood vessels. There are lesions 
such as exudation and bleeding in the images, 
which further increases the difficulty of accurate 
segmentation. Also, it is time-consuming and 
labor-intensive for specialists to label high-
resolution images, while the number of samples 
in public databases is limited, which seriously 
restricts the performance of models trained on 
labeled data. The digital measurement standards 
for fundus vascular morphology have not yet 
been unified. Due to the limited generalization 
ability of models trained on a small number of 
samples, diagnostic methods based on 
segmentation results have poor robustness when 
facing a large amount of complex and variable 
clinical data [3]. 
 
Cluster analysis of pathological data is a current 
research hotspot. With the help of massive 
pathological data and high-speed graphics 
processing unit (GPU) devices, it is possible to 

solve complex problems. The diagnosis of 
retinopathy involves multiple techniques. 
Traditional machine learning methods require 
the design of algorithms for each feature, which 
is labor-intensive and has poor robustness. 
However, the end-to-end training process of 
pathological data cluster analysis can 
automatically mine abstract image features, 
bringing convenience to classification [4, 5]. 
Many studies explored the application of 
pathological data cluster analysis in the diagnosis 
of retinopathy. Sinha et al. proposed a retinal 
image enhancement method based on fuzzy C-
means clustering, which grouped the brightness 
levels into multiple clusters and assigned a 
cluster membership to each brightness level. 
These membership values were mapped to the 
corresponding initial values, and the green 
channel of the modified image was equalized 
using adaptive histogram equalization to obtain 
an enhanced image. This method could preserve 
the natural features of anatomical retinopathy 
images and improve the overall information 
conveyed by retinal images, thereby achieving 
effective disease diagnosis [6]. The detection of 
diabetes retinopathy is a time-consuming and 
laborious process, which requires 
ophthalmologists to examine and evaluate the 
digital color fundus photography images of the 
retina and identify the diseases related to 
vascular abnormalities caused by diabetes. 
Kumari et al. proposed a diabetic retinopathy 
detection method based on an automatic 
decision-making ResNet feedforward neural 
network and analyzed and mapped missing 
connections of retinal arterioles, 
microaneurysms, venules and central fovea, 
cotton wool spots, macula, outer lines of the 
optic disc, and hard exudates and hemorrhages 
in color and black-and-white images through 
integrated mapping technology. Accurate 
calculations when obtaining vector sequences 
were performed to identify diabetic retinopathy 
processes [7]. Manual observation of retinopathy 
makes the detection process more complicated, 
tedious, and error prone. Dayana et al. designed 
a retinopathy severity classification method 
based on feature fusion and optimized an 
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integrated refined deep residual network 
(RDRN), which first eliminated noise and 
enhanced image contrast through preprocessing. 
Then, the optic disc was segmented using a 
spatial attention U-Net based on dilated 
convolution. The blood vessels were segmented 
using an entropy-based hybrid technique. 
Subsequently, the lesion area was segmented 
using a fusion U-Net model based on the 
attention mechanism and a weighted focal loss 
function. Features were extracted and fused 
using a two-layer fusion network, and 
retinopathy was classified using an RDRN that 
integrated a squeeze excitation module and a 
tunicate spider monkey optimization algorithm 
[8]. Retinopathy image segmentation is an 
important step to assist doctors in diagnosing 
retinopathy and provide information about blood 
vessels. Compared with manual segmentation, 
segmentation based on pathological data cluster 
analysis can complete the task of retinopathy 
image segmentation more quickly. With people's 
concern for vision health and the continuous 
increase in the number of retinal diseases, more 
people need retinal examinations. The research 
on retinal image segmentation algorithms based 
on pathological data cluster analysis is becoming 
increasingly important. However, image 
segmentation algorithms based on image 
processing have difficulty dealing with complex 
and variable retinopathy images, and the images 
captured by different types of cameras have 
significant color differences. Therefore, 
algorithms may need to be designed with 
different parameters for different situations. 
Algorithms based on traditional machine learning 
require manual design of features that are also 
obtained through some simple algorithms, which 
has no guarantee if these algorithms can extract 
the required features well or these features are 
the most suitable features for pixel classification 
in the image. Different theories have also 
proposed different feature selection. The design 
of these features is a complex task [9, 10]. 
 
Although there are many achievements in 
retinopathy diagnosis, the existing research still 
has certain limitations, which include that some 

methods still have difficulty accurately extracting 
the fine vascular features and lesion areas when 
dealing with complex lesion images, while some 
others rely on specific datasets or preprocessing 
methods and have insufficient universality. There 
are still some methods that lack in-depth analysis 
of the time complexity and space complexity of 
the algorithms, making it difficult to be efficiently 
applied in actual clinical scenarios. This study 
proposed a retinopathy diagnosis technique 
based on pathological data cluster analysis using 
a large-scale dataset of retinopathy images. The 
proposed method designed a diagnostic network 
that integrated retinal vascular characteristics by 
analyzing pathological data and combining 
cluster analysis methods. Image segmentation 
was employed to divide the retinal image into 
two parts of blood vessels and background. 
Pathological data cluster analysis was used to 
extract the abstract features in the image before 
the classification and diagnosis being carried out 
through the deep learning network. This study 
would promote medical scenarios and be helpful 
for the early and accurate diagnosis and effective 
treatment of retinopathy by improving the 
accuracy of diagnosis, reducing the risk of 
complications of retinopathy, and effectively 
improving the health status of patients, which 
would have a positive and profound impact on 
improving the health level of the human eyes. 
 
 

Materials and methods 
 
Segmentation of retinopathy image 
The image segmentation of retinopathy was the 
segmentation of retinal cell images collected by a 
fundus camera into two parts, including blood 
vessel and background. However, the current 
image segmentation algorithm for retinopathy 
based on image processing technology is still 
unable to match the segmentation effect of 
doctors. Especially in the case of exudate and 
hemorrhage in the image of retinopathy, the 
segmentation effect is obviously reduced. The 
common image segmentation methods of 
retinopathy can be summarized as follows. 
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( )( )1 1n nR f f f I−= o L    (1) 

 

where R  was the result of segmentation. I  was 

the input image of retinopathy. 
if  was the 

operation of the image and the synthesis of these 
operations. For the algorithm based on image 

processing technology, each operation f  was 

the image processing step defined in an 
algorithm such as matching filtering, Gabor 
filtering, etc. For the algorithm based on 
pathological data clustering analysis (PDCA), it 
could be divided into two steps as below. 
 

( )( )1 1k kV f f f I−= o L    (2) 

 

( )( )1 1n n kR f f f V− += o L     (3) 

 
where V was the feature matrix composed of 

the feature vectors of each pixel. From 
1f  to 

kf  

was the feature extraction of the algorithm, 
which was also a pre-defined operation. 

However, from 
1kf +

 to 
nf  was the classifier 

part. After setting the parameters, these 
operations could be learned according to the 
training samples, and the parameter values 
would be updated during the learning process. 
For deep learning, all operations of image were 
obtained through learning. 
 
Image segmentation of retinopathy 
Image segmentation of retinopathy was to divide 
the image into non-overlapping or regularly 
overlapping small pieces and used the algorithm 
to process one small piece at a time. After all the 
image blocks were processed, they were spliced 
into a whole to complete the segmentation of the 
retinopathy image. The pixel-by-pixel 
segmentation algorithm could also be regarded 
as an image segmentation algorithm, which was 
a special case of the block window size of 1. The 
whole image segmentation algorithm could also 
be regarded as a special case, that was, the block 
window was the whole image itself. In this way, 
the segmentation process of the image of 

retinopathy could be abstracted into the 
following models. 
 

( ),w wP partition I =     (4) 

 

( )( )
, 1 1 ,w wP n n w wR f f f P
 −= o L    (5) 

 

( )
,

1

w wPR partition R


−=    (6) 

 
where partition  was the function of dividing 

image I  into image blocks. ,w wP   was the 

ordered image block sequence obtained by 
dividing. w  was the size of the image block to be 
divided. w  was the size of the target window to 

be segmented from the image block. 
PR  was the 

segmentation result of the image block. 
1partition−  was the inverse operation 

corresponding to partition . The segmentation 

result was spliced according to the sequence of 
blocks to form a complete segmentation image. 
The PDCA algorithm was used to analyze the 
algorithm time complexity of retinopathy image 
segmentation. In this algorithm, the computation 
was mainly concentrated in data layer and full 
connection layer. For the down sampling layer 
and activation layer, the computational 
complexity was not on the same order of 
magnitude as the data, so it was ignored [11]. 
When the window was not one-dimensional, the 
full connection layer could not be used because it 
would destroy the position relationship of the 
matrix itself. Therefore, only data analysis and 
manipulation were needed. To study the 
influence of w  and w  on the algorithm 
complexity, the parameters of PDCA must be 
fixed. However, due to the need to get different 
w  and w , the fixed network could only let w  
and w  show a one-to-one correspondence. 
Therefore, to solve this problem, only the 
diagnostic network for retinal lesions was used 
with the front-end part of the network keeping 
the same. By adjusting the fault diagnosis 
parameters, the experimental requirements 
were obtained. Compared with the front data 
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layer, the calculation amount of a few layers of 
reverse diagnosis could also be ignored. 
Therefore, in a forward operation, the time 
complexity of the diagnosis network of 
retinopathy was as follows. 
 

( ) ( ) ( )
1

,
L

l l l l l

w h

l

T w w r c k k n O M O A
=

 = +      (7) 

 

where ( )1l l L  , l , and L  were the deepest 

data layers. lr  and 
lc  were the number of rows 

and columns of input matrix in the diagnosis layer 
l , so for the first layer, it was the number of rows 

and columns in w'. 
l

wk  and 
l

hk  were the width 

and height of diagnosis core in the diagnosis layer 

l . 
ln  was the number of diagnosis cores in the 

diagnosis layer l . ( )O M  was the complexity of 

one floating-point multiplication. ( )O A  was the 

complexity required for this method by doubling 
the floating-point number. In a fixed diagnosis 

network of retinopathy, lr  and 1r  were linear. 

Similarly, lr  and 
lc  were also linear. Then the 

equation would be the follows. 
 

( ) ( ) ( ) ( )
2

1

,
L

l l l l l l

w h

l

T w w a r c k k n O M O A
=

 = +       (8) 

 

where 
1l lr a r= . Then, the time complexity 

could be expressed as below. 
 

( ) ( ) ( ) ( )
2

1 1

1

,
L

l l l l l l

w h

l

T w w r c a r c k k n O M O A
=

 
 = +   

 
   (9) 

 
The above formulas showed that, for a fixed size 

diagnosis network of retinopathy, ( ),T w w  was 

only related to 
l lr c , that was, the size of w . It 

was noted that the number of image blocks 
needed to be divided for a retinopathy image was 
related to w  because the ultimate goal was to 
segment all pixels in the image, and only w  could 
be segmented each time. For segmentation of a 
whole retinopathy image, the time complexity 
was as follows. 

( ) ( ) ( ) ( )
2

1

,
L

l l l l l lw h
I w h w h

lw h

I I
T w w w w a r c k k n O M O A

w w =

 
  = +   

 


   (10) 

 

where 
wI  and 

hI  were the width and height of 

the retinopathy image. 𝑤𝑤  and 𝑤ℎ  were the 
window width and height of each output 

segmentation result. 𝑤𝑤
′  and 𝑤ℎ

′  were the width 
and height of the retinopathy image block. 

Equation 10 demonstrated that 1w hw w= = , 

and its time complexity was very high, especially 
for the high-resolution image of retinopathy. The 
time complexity of the whole image 
segmentation algorithm was the lowest. The 
segmentation algorithm based on PDCA was 
between the two. The time complexity of retinal 
vascular segmentation algorithm based on PDCA 
was much lower than that of pixel-by-pixel 
segmentation algorithm, especially when 𝑤𝑤 
and 𝑤ℎ values were relatively large. In terms of 
time complexity, algorithms based on PDCA were 
more complex than whole image segmentation. 
However, in terms of spatial complexity, it was 
much lower than whole image segmentation, 
which was because the forward operation of 
each retinopathy diagnosis network only 
required running one image block rather than the 
entire image. Meanwhile, the image block size 
could be adjusted according to the performance 
of the program deployment machine to avoid 
network failure caused by insufficient memory or 
insufficient display memory. A large number of 
samples were needed to complete the training, 
while overfitting the training data should be 
avoided to help cross the local best point. The 
Visual Geometry Group (VGG) network 
(http://www.robots.ox.ac.uk/~vgg/research/ver
y_deep/) and the depth residual network 
(https://arxiv.org/abs/1512.03385) were trained 
on the ImageNet database (http://www.image-
net.org/), which currently contained more than 
1.4 × 107 labeled samples of retinopathy images. 
For the image of retinopathy, there were few 
labeled images in the international open 
databases. Digital Retinal Images for Vessel 
Extraction (DRIVE) (https://www.isi.uu.nl/ 
Research/Databases/DRIVE/) only contained 40 
labeled retinopathy images. Challenge in 

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
https://arxiv.org/abs/1512.03385
http://www.image-net.org/
http://www.image-net.org/
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Automated Segmentation of the Retinal 
Vasculature (CHASE_DB11) (https://blogs. 
kingston.ac.uk/retinal/chasedb1/) only had 28 
labeled retinopathy images. STructured Analysis 
of the Retina database (STARE) (https://cecas. 
clemson.edu/~ahoover/stare/) had 20 labeled 
retinopathy images. Moreover, the samples in 
these databases were taken under different 
conditions. In DRIVE database, 33 pictures were 
of normal people with the remaining seven 
pictures as mild retinopathy, while most of the 
pictures in STARE were of retinopathy [12]. The 
information contained in the samples was quite 
different, which was not conducive to network 
convergence. In this case, training the whole 
image segmentation diagnosis network of 
retinopathy required more sample expansion 
and faster convergence speed of the neural 
network to reduce the overfitting problem 
caused by too many network iterations. 
However, for the network of image 
segmentation, these problems did not exist. 
During training, the image block of retinopathy 
input into the diagnosis network of retinopathy 
was obtained by sampling from the original 
image, and the number of samples could be 
controlled at will, which meant that, based on the 
method of PDCA, each original sample could get 

at least w h

w h

I I

w w
 samples, and the samples could 

be overlapped, which would produce more 
samples. Enough samples allowed the design of a 
very deep diagnostic network of retinopathy to 
extract more abstract features. The 
segmentation method based on image 
segmentation could change the data distribution 
of training samples, so that the depth diagnosis 
network could learn more useful features. An 
original retinal image could be expressed as a 
distribution p , then the distribution of the 

blocks could be expressed as wp  . The image 

block was obtained by sampling from the original 
image. In other words, the distribution p  could 

be obtained by synthesizing the limited sampling 

wp  as follows. 

( )
1 2
, , ,

nw w wp g p p p  = L  (11) 

 

,i jw w i j −                 (12) 

 

1

n

i

i

w I
=

 =U  (13) 

 

,I jw w i j  = I  (14) 

 
where   was an empty set, meaning no pixels. In 

this way, equation 12 restricted all image blocks 
from having two identical image blocks, which 
was a prerequisite for ensuring that only a limited 
number of samples could sample the entire 
image. Equation 13 ensured that a limited 
number of image blocks could be synthesized 
into the whole image. When the restriction 
equation 14 was added, the method of image 
segmentation became non-overlapping between 
any two different image blocks. When training 
the diagnosis network of retinopathy, full image 
segmentation was needed to take the whole 
image as the input of the network or use some 
methods to cut to expand the sample. But, in 
essence, it was still full image segmentation. 
Based on the segmentation of image blocks, it 
was not necessary to put all the blocks in the 
image into the diagnosis network of retinopathy 
with equal frequency for training. If the designed 
network was not ideal in some local 
segmentation effects such as in the video disk, 
the number of training samples of image blocks 
including the video disk could be increased to 
enhance the local learning of the network. The 
method of image segmentation was different in 
training stage and testing stage. In the training 
stage, the training dataset was generated by 
image segmentation to improve the 
segmentation effect of the diagnosis network of 
retinopathy. Therefore, in this stage, it was not 
simply to block the image in a non-overlapping 
area, but to reduce the proportion of false 
segmentation as much as possible. The areas 
prone to misclassification in the diagnosis 
network  of  retinopathy  often   occurred  in  the 
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A. Diagnostic operation process.           B. Full connection operation process 
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Figure 1. The diagnostic and full connection operation processes. 

 
 
edge of blood vessels, the edge of the optic disc, 
and other areas. Therefore, the sampling strategy 
adopted in this research was to randomly sample 
a small amount, and then mostly sample the 
vascular area, the edge of the optic disc, and the 
area with lesions. In the test phase, all the blocks 
needed to meet equation 13 to ensure that all 
the pixels could be segmented. Therefore, during 
testing, the nonoverlapping block method could 
be used and followed by inputting the network 
block by block. Concatenating the results or 
overlapping method could be used. 
 
Design of diagnosis network for retinopathy 
The diagnosis operation in the diagnosis network 
of retinopathy was shown in Figure 1A. The 
diagnosis core slide from the starting position to 
the last position of the input matrix with a fixed 
window size. Every time the position was 
changed, a diagnosis result would be produced. 
Therefore, for the input two-dimensional matrix, 
the sequential sliding diagnosis operation would 
make the output result matrix retain its spatial 
position information, and its relative position 
would not change, which was very important for 
image segmentation. However, in the diagnosis 
network of retinopathy, the full connection layer 
was usually used at the end (Figure 1B). Each 
neuron in the latter layer was connected with 
each neuron in the former layer. Each connection 
meant that a matrix operation was needed. For 
the retina image, which had a high resolution, the 
computation was too large to run on a general 

computer [13]. This kind of full connection was 
designed for the task of image classification, 
which could make the final feature vector more 
fully nonlinear, thus forming more abstract 
features. However, the final feature vector 
dimension of image classification was very low, 
even if a full join operation was used, its 
computation was still at an acceptable level. 
Meanwhile, the full join operation needed to 
transform the feature into vector form, which 
would lose the information of the relative 
position of the elements in the matrix. The 
number of neurons in the full connection 
operation was obtained by calculating the length 
of the current eigenvector, which meant that, 
when training the network, one network could 
only accept and process one size of input image 
and needed to be retrained after changing the 
size. By replacing the last full connection 
operation with the diagnosis operation, the 
original common retinopathy diagnosis network 
became the whole retinopathy diagnosis 
network. Full connection operation and diagnosis 
operation were linear transformation of input 
data, so it was feasible to replace full connection 
with diagnosis. Meanwhile, in the process of 
diagnosis, the output was still a two-dimensional 
matrix and could maintain the original relative 
position. In addition, compared with the full 
connection, the diagnosis operation was a kind of 
sparse connection. Each element of the output 
layer was only connected with the local element 
of the input layer, and the diagnosis core 
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controlled the number of local elements. This 
sparse connection could greatly reduce the 
amount of computation. The mapping 
relationship between output layers was obtained 
by sharing a diagnostic kernel with fewer 
parameters. Compared with fully connected 
layers, the parameters included in the model 
would be greatly reduced, which was beneficial 
for network training and could reduce the 
possibility of overfitting problems [14, 15]. 
 
Image preprocessing of retinopathy 
In the retinopathy dataset, the color and contrast 
of different retinal images were quite different. A 
diagnostic network for retinopathy was needed 
to learn the invariant features of color and 
contrast changes for regression. Therefore, by 
adding preprocessing steps, it was possible to 
enhance the regression friendly features in 
retinal images, remove interference from 
different colors and contrasts, reduce the 
number of layers in the retinopathy diagnosis 
network, and improve the accuracy of regression. 
The retina area in the image was aligned to the 
center of the image and cut off the surrounding 
background area as much as possible. Due to the 
different background areas around the retina 
region in different cameras in the dataset, there 
was a problem of inconsistent normalized size of 
the retina region. Therefore, it was necessary to 
make the retina region as large as possible in the 
image. In addition, maximizing the retinal area 
could reduce the influence of background as 
image storage must be rectangular, while the 
retinal region was disc shaped. Therefore, the 
background area should be pure black, but a 
small amount of random noise was inevitably 
generated during shooting and in the background 
area. Gaussian filtering was used in this study to 
smooth the random noises as follows. 
 

( )

2 2

22
2

1
,

2

x y

g x y e 



+
−

=  (15) 

 
where x  and y  were the distance between the 

pixels and the horizontal and vertical coordinates 
of the filtering center point.   was the 

parameter controlling the smoothing degree 
during filtering. The larger the  , the smoother 
the image. The dataset used in this research had 
high resolution and needed to filter out noise as 
much as possible, so the setting was relatively 
large. Since the surrounding pixels were all 0, the 
noise pixels in the image filtered by Gauss were 
very low. Only a reasonable threshold was 
needed to segment the retina region and 
background region. After locating the upper, 
lower, left, and right boundaries of the retina 
area in the image, the retina area was cut out as 
the region of interest. Since different cameras 
were used to take the images in the database, 
preprocessing was required using PDCA method, 
which could standardize the histogram of each 
image to a similar level. After the clustering 
analysis of pathological data, the image needed 
to be cut to a uniform size before it could be used 
as input for training. Since the full connection 
layer was used in the network, the input size of 
the layer needed to be fixed for calculation. 
 
Action layer of diagnostic network for 
retinopathy 
The fully connected layer and dropout layer were 
shown in Figure 2. The role of the full connection 
layer was to project the feature map space 
extracted from the front layer of the neural 
network into the target space. The number of 
output units of the last full connection layer was 
generally related to the target of the neural 
network. If it was a classification, it was the same 
as the number of categories. The calculation 
process of full connection layer could be 
expressed as follows. 
 
𝑦 = 𝑤𝑥 (16) 
 
where w  was the weight matrix connecting 
input and output in this layer. Offset had been 
included in w . x  was column vector, and x0 = 1. 
In the diagnosis network of retinopathy, because 
the output of the anterior layer was a two-
dimensional matrix, all its elements needed to be 
arranged as column vectors. There were 
connections between all neurons in two fully 
connected layers, while there were no 
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connections between neurons in the same layer. 
So there were many redundant parameters in 
this connection because not all neurons 
represented parameters that were related to all 
input elements. Many parameters could easily 
lead to overfitting, so a penalty term was needed 
to the loss function. However, this redundant 
parameter was also beneficial for learning more 
complex features, which was because the 
diagnostic layer was a local connection within the 
scope of the diagnostic template and could only 
be calculated using data within a local range. The 
fully connected layer calculated using all input 
data, making feature fusion more thorough. 
 
 

P

P

P

P

 
 
Figure 2. Schematic diagram of full connection layer and dropout 
layer. 

 
 
The function of dropout layer was to randomly 
ignore some outputs with a set probability, 
thereby preventing overfitting and increasing the 
generalization ability of the network. The 
number of neurons in the full connection layer 
was often large, so in the neural network, the 
characteristics of the final output might be 
determined by a few neurons. That was, these 
few neurons had a large weight in the weight 
matrix, while other neurons had a small weight. 
After adding the dropout layer, the output of 
some neurons was randomly discarded with a 
certain probability. When the effective output 
was discarded, the loss function of the neural 

network would be very high. According to the 
optimization principle, it would learn the 
effective features in the current situation, and 
the discarded neuron output was completely 
random. Therefore, the neural network was 
forced to make the output of each neuron 
effective characteristics. The calculation process 
of dropout layer was as follows. 
 

( ),y f x p=  (17) 

 
where p  was the set drop probability. The larger 

the p , the more output was discarded in the 

dropout layer, and the more sparse the output 
resulted. The output of discarded neurons was 0, 
which would force each feature of the output to 
have stronger expression ability. However, it also 
destroyed the combined features of the input 
layer, so that the model could not get more 
features, and the overall expression ability would 
decline. Moreover, the setting was also related to 
the number of neurons contained in the layer. 
When there were many neurons, a large discard 
probability could be appropriately selected. 
Partial output was discarded, causing only some 
parameters in the entire connection layer to 
participate in the operation, which reduced the 
parameters in the entire neural network and was 
beneficial for preventing overfitting and 
improving the generalization ability of the neural 
network. The dropout layer generally only 
worked in the training phase but would be 
removed in the test phase. All effective features 
in the network could be combined to obtain 
better features, thereby improving the 
classification performance. Euclidean distance 
loss function layer was the deepest layer of the 
whole diagnosis network of retinopathy, which 
mainly calculated the difference between the 
output value of the diagnosis network of 
retinopathy and the value of artificial annotation. 
The main reason for using the Euclidean distance 
loss function instead of the cross entropy 
function was to predict the severity of 
retinopathy rather than simply classify it into 
corresponding classes [16, 17]. Moreover, when 
the predicted value was different from the 
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marked value, the loss function value of different 
predicted values should be different. The 
Euclidean distance loss function was expressed 
as follows. 
 

2

2

1

1
ˆ|| || || ||

2

N

n n

n

Loss y y w
N


=

= − +  (18) 

 
where N was the number of samples. y was the 
predicted value of samples. 𝑦̂𝑛  was the labeled 
value of samples. 𝜆  was the penalty factor. 𝑤 
was the parameter in the model.  
 
Comparative analysis 
The comparative experiments were conducted 
using two E5 2620 V3 CPUs, GTX Titan X graphics 
processor, 128 GB RAM under Ubuntu 16.04LTS 
64-bit operating system. Caffe was employed as 
deep learning library with cuDNN5.1 acceleration 
tool. The model training mainly relied on the 
ImageNet database with some data from DRIVE, 
CHASE_DB11, and STARE for verification and 
testing. A total of 30,000 images were randomly 
selected from the ImageNet database for model 
training and 5,126 images for model testing, 
while 40, 28, and 20 images were screened out 
from the DRIVE, STARE, and STARE databases, 
respectively, for model verification. The dataset 
used in this study included 35,126 images of 
retinopathy with 25,810 (73.48%) in category 0 
that meant no obvious retinopathy and no 
abnormal blood vessels or exudation in the 
fundus; 2,443 (6.96%) in category 1, indicating 
mild non-proliferative retinopathy, presenting as 
retinal microhemangiomas or a small number of 
bleeding points; 5,292 (15.07%) in category 2 as 
moderate non-proliferative retinopathy with 
retinal hemorrhage, hard exudation, and cotton-
like spots visible, but not reaching the severe 
standard; 873 (2.48%) in category 3, indicating 
severe non-proliferative retinopathy with ≥ 20 
retinal hemorrhage in each quadrant or at least 2 
quadrants showing venous beaded changes or 1 
quadrant demonstrating retinal microvascular 
abnormalities; 708 (2.01%) in category 4, 
indicating proliferative retinopathy with the 
appearance of retinal neovascularization, 

vitreous hemorrhage, or tractional retinal 
detachment. For databases of DRIVE, 
CHASE_DB11, and STARE, their annotation 
systems differed from the classification criteria of 
this study, therefore, category alignment was 
achieved through secondary annotation by 
experts during data fusion. Since the goal of this 
research was to distinguish normal and 
proliferative retinopathy, only category 0 and 
category 4 needed to be included. So category 1 
accounted for 97.33%, while category 4 only 
accounted for 2.67%. The number of these two 
types of samples in the dataset was very 
unbalanced. Therefore, image transformation 
methods such as mirror image, rotation, 
translation, and brightness change were applied 
to make the two types of samples balanced. In 
this study, proliferative retinopathy samples 
were defined as negative samples, while normal 
samples were defined as positive samples. The 
test samples included 39,533 normal samples 
and 1,206 proliferative retinopathy samples. All 
sample sizes were normalized to 512 × 512. The 
convolution kernels were all set to 3 × 3 (Figure 
3). The initial learning rate was 6

1 10
−

 , and 
Nesterov was used as the network optimization 
method. The number of samples input each time 
during training was 48, and the probability of 
dropout layer setting was 0.5. After 
preprocessing the image data, the parameters 
for the retinopathy diagnostic network were 
initiated. The trained retinal image segmentation 
model was used for initialization of blocks 1, 2, 
and 3, while the other layers were initialized 
randomly. Block 1 was mainly used to extract the 
basic features such as edges and textures of the 
image, while block 2 was used to extract the mid-
layer features such as the shape and direction of 
blood vessels in the image, and block 3 was used 
to extract high-level features such as the 
characteristics of retinopathy in images. Image 
transformation methods such as mirroring, 
rotation, translation, and brightness change were 
used for data augmentation to balance normal 
and proliferative retinopathy samples. After 
shuffling the samples, they were input into the 
diagnostic network one by one for training. The 
accuracy  rate  was  taken  as  the  measurement 
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Figure 3. Diagnostic network framework. 

 
 
standard. The model was verified using the 
images retrieved from the DRIVE, CHASE_DB11, 
and STARE databases to evaluate the 
performance and generalization ability of the 
model. A total of 5,126 images retrieved from the 
ImageNet database were used for model testing. 
Ten independent experiments were performed 
to verify the stability and generalization ability of 
the model using 10-fold cross-validation. For 
each experiment, the training set and the test set 
were randomly selected from the dataset at a 
ratio of 8:2. To avoid data bias, stratified 
sampling was adopted to ensure that the 
proportion of each type of sample was consistent 
with that of the original dataset. In each 
experiment, four types of samples were 
dynamically enhanced, and three times the 
number of samples was generated through 
mirroring, rotation, and brightness adjustment. 
The network weights were reinitialized in each 
experiment to avoid the interference of 
parameters from the previous training. Different 
random seeds (0 - 9) were used to control the 
data partitioning and enhancement process to 
ensure the reproducibility of the experiment. 
Each experiment followed the standardized 
process, and the training rounds were set at 200 
rounds. 
 
Statistical analysis 

SPSS 26.0 (IBM, Armonk, New York, USA) was 
employed for statistical analysis. An independent 
sample t-test was used to verify whether there 
was a significant difference in diagnostic accuracy 
between PDCA and image processing-based 
retinopathy diagnosis techniques. The P value 
less than 0.05 was defined as a significant 
difference between the two groups.  
 
 

Results and discussion 
 

The experimental results showed that the 
accuracy of the retinopathy diagnosis model 
based on image processing was less than 70% 
with the lowest accuracy of only 35.45% and the 
average accuracy of ten experiments as 58.29%. 
Such results might be because traditional 
methods relied on manual design of features, 
making it difficult to effectively capture the 
complex features of retinopathy, while they had 
poor robustness against interference factors 
such as uneven illumination and noise. In 
contrast, the proposed pathological data cluster 
analysis diagnostic technique performed 
significantly better. The diagnostic accuracies of 
the ten experiments were all stable at above 90% 
with an average accuracy rate of 93.82%. The 
results demonstrated that there was a significant 
difference in the diagnostic accuracy between 
the retinopathy diagnosis technologies based on 
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Table 1. Comparison of proposed method with traditional image processing method.  
 

Experiment 
The diagnostic accuracy of retinopathy based on  

P value 
Pathological data clustering analysis Image processing 

1 93.09% 68.76% < 0.05 
2 92.63% 54.69% < 0.05 
3 95.02% 65.49% < 0.05 
4 94.26% 63.28% < 0.05 
5 92.98% 54.26% < 0.05 
6 93.45% 35.45% < 0.05 
7 96.34% 64.37% < 0.05 
8 94.16% 48.49% < 0.05 
9 93.68% 63.28% < 0.05 

10 92.64% 64.86% < 0.05 

 
 
pathological data cluster analysis and based on 
image processing (P < 0.05) (Table 1). The results 
indicated that the PDCA technology could 
significantly improve the accuracy of retinopathy 
diagnosis, which might be because the proposed 
model could automatically mine complex lesion 
features and had an end-to-end training 
mechanism. Traditional diagnostic techniques for 
retinopathy suffer from difficulties in feature 
extraction and low diagnostic accuracy. This 
study aimed to break through the limitations of 
traditional diagnostic methods through PDCA 
technology and proposed a retinopathy diagnosis 
technique based on PDCA. The results of ten 
independent experiments showed that the 
average accuracy rate of the proposed 
technology reached 93.82%, significantly 
superior to traditional image processing 
methods, proving its effectiveness. In addition, 
another advantage of segmentation methods 
based on PDCA was that it could control the 
sampling position of image blocks, thereby 
reducing the problem of retinopathy diagnosis 
networks biased towards a certain category due 
to class imbalance. In retinopathy images, it was 
necessary to segment blood vessels and 
background, but the proportion of these two 
types of pixels in retinopathy images was 
severely imbalanced. In the three current 
available databases, the background class 
contained more than 85% of pixels. Therefore, 
for the whole image segmentation algorithm, 

additional processing might be required to 
overcome the problem of class imbalance. For 
algorithms based on PDCA, sampling could be 
done in a certain way to reduce areas in the 
image where there were less or no blood vessels. 
For example, in the boundary part of the image, 
there were basically no blood vessels. So, 
sampling of this part could be omitted. This study 
adopted an adaptive sampling strategy, which 
excluded areas without blood vessels at the 
image boundaries and prioritized sampling areas 
with dense blood vessels, optic disc edges, and 
lesion areas, resulting in a significant increase in 
the proportion of vascular pixels in the training 
samples. Compared with traditional 
segmentation methods, this strategy significantly 
improved the effectiveness of vascular 
segmentation and effectively reduced the impact 
of category bias on the final diagnosis. The 
retinopathy diagnosis technology based on PDCA 
had more network parameters for related 
analysis and could capture more complex lesion 
patterns. The design of the size-invariant feature 
map avoided the loss of small blood vessels in 
down sampling. However, this study still had 
certain limitations. The sample size of 
international public databases was relatively 
small. Although the sample size had been 
expanded through data augmentation, the 
generalization ability in extremely rare lesion 
types still required more clinical data for 
verification. In the future, multi-center medical 
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imaging data can be combined to further 
optimize the network's ability to identify rare 
cases. 
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