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Precision agriculture has emerged as a critical response to increasing challenges in global food security and crop 
management, particularly under the pressure of climate change and intensified pest outbreaks. Crop pests such 
as rice thrips significantly reduce yield and quality, especially in humid and tropical regions. Pest prediction is an 
important part of precision agriculture, which can help agricultural managers take timely prevention and control 
measures to improve the yield and quality of crops. Accurate forecasting of pest occurrence remains a major 
challenge due to the complex interactions among meteorological, agronomic, and soil variables. This study built 
a prediction model for rice thrips pests through a deep learning method based on meteorological, crop growth, 
and soil environmental data. The research data covered meteorological data including temperature, humidity, 
precipitation, wind speed, crop growth data including rice growth stage and crop density, and soil data including 
soil pH, nitrogen, phosphorus, and potassium content from January 2018 to December 2020. Pearson correlation 
analysis and variance inflation factor (VIF) analysis were used to identify the features related to the number of 
rice thrips. Feature selection was performed through Lasso regression, and temperature, humidity, and crop 
density were selected as the optimal features. The research used a support vector regression (SVR) model for pest 
prediction and evaluated it on training and test sets. The results showed that the SVR model exhibited high 
prediction accuracy on both training and test sets with a small mean square error (MSE) and a high coefficient of 
determination (R²), which proved the effectiveness of the model in pest prediction. The proposed model achieved 
high accuracy with a MSE of 0.42 and a R² of 0.88 on training set, and a MSE of 0.38 and a R² of 0.85 on test set. 
When applying to 2021 data, the prediction error ranged from 1.2% to 3.1%. Based on predicted pest thresholds, 
customized prevention and control strategies were implemented, improving early warning efficiency and reducing 
false alarms. The results confirmed that the proposed pest prediction model could provide scientific decision-
making support for agricultural managers and promote the development of precision agriculture. 
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Introduction 
 
Agricultural production is the foundation for 
human society to maintain food security and 
economic development. However, with the 

intensification of global climate change and 
differences in farmland management levels, the 
occurrence of agricultural pests has posed a huge 
threat to the production and quality of crops, 
which affects not only the growth and yield of 
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crops but also the health of crops by transmitting 
diseases and even causing serious food shortages 
in some cases [1]. In particular, the harm of pests 
in rice production has become increasingly 
prominent, especially the outbreak of certain 
pests in rice fields, which can lead to serious yield 
reductions or even devastating effects [2]. The 
rice thrip (Stenotus rubrovittatus) is a common 
sucking pest of rice, which is about 2 - 3 mm long, 
a brightly colored body usually red or orange in 
adult, and three stages of life cycle including egg, 
nymph, adult with the adult and nymph being the 
main stages of damage. The adult sucks the 
young leaves and panicles of rice plants, while 
the nymph mainly parasitizes on the back of rice 
leaves [3]. These sucking behaviors lead to the 
loss of plant cell fluid, which in turn causes the 
leaves to turn yellow and wither, ultimately 
affecting the growth and development of rice. 
The sucking of rice thrips can also reduce the 
disease resistance of plants and provide a 
transmission pathway for other diseases such as 
rice false smut and rice blast. In addition to direct 
physical damage, the saliva of rice thrip contains 
toxins, which destroy the normal function of 
plant cells and make plants more vulnerable [4]. 
The aggregation and reproduction of nymphs 
further aggravate the damage caused by the 
pest. Studies have shown that rice thrips have 
strong adaptability to environmental conditions, 
especially under conditions of high temperature 
and high humidity, where they reproduce quickly 
and the insect population density increases 
rapidly, causing serious damage [5]. In recent 
years, with the intensification of climate change, 
the distribution area of rice thrip has continued 
to expand, posing greater challenges to global 
rice production [6]. The insecticide resistance of 
rice thrip has gradually increased, and traditional 
chemical control methods are no longer 
effective, forcing agricultural producers to find 
new control methods. At present, control 
strategies for rice thrips include chemical control, 
biological control, and physical control [7]. 
However, due to its high reproductive capacity, 
strong adaptability, and concealment, existing 
control methods often face problems such as 
unstable effects and high costs. Therefore, 

studying the ecological behavior and 
environmental adaptability of rice thrip and 
exploring accurate prediction and control 
strategies based on big data have become 
research hotspots in agricultural pest 
management [8]. 
 
With the rapid development of big data 
technology, data-driven pest prediction has 
become an important direction of modern 
agricultural research [9]. Big data analysis can 
reveal the relationship between the occurrence 
patterns of pests and environmental factors by 
integrating and deeply mining meteorological 
data, pest monitoring data, crop growth data, 
etc. [10]. Comparing to the traditional 
experience-based pest early warning system, big 
data analysis provides a more accurate and 
dynamic prediction model that can identify the 
occurrence timing, spatial distribution, and 
occurrence intensity of pests in advance, thereby 
providing farmers with timely prevention and 
control suggestions [11]. Studies have shown 
that pest occurrence is often affected by multiple 
environmental factors such as climatic conditions 
including temperature, humidity, and 
precipitation, as well as agricultural management 
factors including crop growth conditions and 
planting density. Changes in these factors may 
lead to the outbreak or spread of pests. 
Therefore, how to construct an accurate pest 
prediction model through big data analysis of 
multi-source data has become an important 
challenge facing agricultural scientists [12]. 
Traditional pest prediction methods such as 
statistical models based on meteorological data 
and phenological models can reflect the trend of 
pest occurrence to a certain extent, but their 
accuracy and adaptability are limited. In recent 
years, pest prediction research based on machine 
learning, deep learning, and other algorithms has 
made significant progress. In the prediction of 
rice field pests, researchers have successfully 
predicted the outbreak period of rice field pests 
by establishing a regression model based on 
meteorological conditions and historical pest 
data [13]. However, the application of big data 
analysis in agricultural pest prediction still faces 
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many challenges such as data quality, diversity of 
data sources, and generalization ability of the 
model. Therefore, how to build a pest prediction 
model that is suitable for different regions and 
environments and improve the prediction 
accuracy of the model is still a hot topic and 
difficulty in current research [14]. 
 
The prevention and control of rice thrips has 
always been one of the difficulties in rice pest 
management. Traditional prevention and control 
methods mainly rely on chemical pesticides, but 
as pests become more resistant to pesticides, the 
effectiveness of pesticides is declining. Scholars 
have begun to explore more diverse prevention 
and control strategies mainly including new 
methods such as biological control, physical 
control, and ecological control. Biological control 
is an important method of using natural enemies 
to control the number of the rice thrip. Studies 
found that the natural enemies of rice thrip 
included predatory insects such as ladybugs and 
spiders and parasitic insects such as parasitic 
wasps. These natural enemies inhibited the 
expansion of rice thrip populations by preying on 
or parasitizing the eggs, nymphs or adults of rice 
thrip [15]. The advantage of biological control is 
its sustainability and ecological safety, but its 
implementation effect is usually restricted by 
environmental factors and the number of natural 
enemy populations. Physical control mainly 
includes the use of trapping devices, light 
trapping, and sonic insect repellent. Studies 
showed that the use of sex attractants and light 
sources to trap adult rice thrip could effectively 
reduce insect population density, while avoiding 
the use of pesticides [16]. In recent years, the 
development of Internet of Things technology 
and remote sensing technology has provided 
new opportunities for pest monitoring and 
control. By setting up sensors and monitoring 
equipment, the dynamics of rice thrip can be 
tracked in real time, providing data support for 
pest control. Ecological control methods include 
changing rice cultivation patterns using insect-
resistant varieties and rational crop rotation. By 
optimizing the agricultural ecological 
environment, the insect resistance of rice can be 

enhanced, and the possibility of pest occurrence 
can be reduced. These methods not only 
effectively reduce the risk of pest occurrence but 
also help achieve sustainable agricultural 
development [17]. Paddy fields are the main 
ecological environment for rice cultivation. The 
humid climate and special cultivation methods 
make rice an ideal habitat for many pests. As one 
of the common pests in rice cultivation, the rice 
thrip poses a great threat to rice with its strong 
reproductive ability and wide adaptability. 
Especially in a hot and humid environment, the 
occurrence of rice thrip not only directly affects 
the growth of rice, but may also cause secondary 
diseases, seriously reducing the yield and quality 
of rice. Therefore, studying the biological 
characteristics and damage mechanism of rice 
thrip and exploring how to effectively prevent 
and control its spread have become important 
topics in the field of agricultural research [18]. 
Currently, the research on rice thrip mainly 
focuses on its biological characteristics, 
ecological habits, and control strategies. The 
studies on biological characteristics revealed the 
reproduction cycle, ecological habits, and 
adaptability of rice thrip to different 
environmental conditions through several field 
surveys and laboratory studies. The control 
strategies research found that traditional control 
methods mainly relied on pesticide spraying, but 
due to the increasing resistance of rice thrip to 
pesticides, the effectiveness of this method had 
been weakened [19]. In recent years, biological 
control and physical control methods have 
gradually been proposed and achieved certain 
results including reducing the number of thrip by 
releasing natural enemies and installing physical 
barriers.  
 
There are shortcomings in existing research, 
which include that there is no unified research 
conclusion on the climate adaptability and 
biological characteristics of rice thrip, especially 
the ecological differences in different regions and 
different cultivation modes. Although traditional 
control measures can control pests to a certain 
extent, due to the strong concealment and rapid 
reproduction of rice thrips, the control effect is 
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usually not ideal [20]. This study proposed a pest 
prediction model based on big data analysis and 
corresponding prevention and control strategies 
by collecting data of meteorological, pest 
monitoring, rice growth and analyzing the 
relationship between the occurrence law of rice 
thrip and environmental factors. Machine 
learning algorithms were used to predict the 
occurrence time and intensity of pests including 
precision application, automated monitoring, 
and real-time feedback mechanism to reduce the 
use of pesticides and improve the efficiency of 
prevention and control. The actual effects of the 
proposed prediction model and prevention and 
control strategy were verified through field 
experiments to provide scientific data support 
and decision-making basis for agricultural 
production and promote the development of 
precision agriculture. This study provided a new 
perspective for pest ecology, provided farmers 
with scientific prevention and control decisions, 
and promoted the combination of big data and 
intelligent agricultural technology for sustainable 
agricultural development. 
 
 

Materials and methods 
 
Environmental and agronomic factors 
Factors that affect the occurrence of rice thrips 
pests include temperature, humidity, 
precipitation, soil conditions, rice growth stage, 
crop density, and agricultural management 
measures. Each factor has different degrees of 
influence on the occurrence of pests. 
Temperature is a key factor affecting the growth 
and reproduction of rice thrips. Under high 
temperature conditions, the activity range of rice 
thrips expands, and the reproduction rate 
accelerates. In agricultural research, the degree-
day (DD) model is often used to quantify the 
cumulative effect of temperature on insect 
growth and is calculated as below [21]. 
 

max, min,

base

1 2

n
i i

i

T T
DD T

=

+ 
= − 

 
       (1) 

where 𝑇max,𝑖  and 𝑇min,𝑖  are the highest and 

lowest temperatures of the day. 𝑇base  is the 
reference temperature usually 10°C. n is the 
number of days for calculating the accumulated 
temperature. Through the accumulation of 
temperature, the effect of temperature on the 
reproduction of rice thrips can be quantitatively 
evaluated. Humidity is also critical to the growth 
and reproduction of rice thrips. Higher humidity 
can provide a more suitable habitat, promoting 
its reproduction and survival. Humidity is usually 
measured by relative humidity (RH) and can be 
calculated as follows [22]. 
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where 𝐸actual and 𝐸saturation are the actual partial 
pressure of water vapor in the air and the 
saturated water vapor pressure. Too low or too 
high humidity will affect the survival and 
reproduction of rice thrips, so relative humidity 
(Hrel) is needed for quantitative analysis. 
Precipitation is also an important factor affecting 
rice thrips pests. Appropriate precipitation helps 
maintain the water supply required for rice 
growth and can affect the humidity of rice fields, 
thereby affecting the occurrence of pests. 
Precipitation can be quantified by daily 
precipitation as shown below. 
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where 𝑃𝑖  is the precipitation, which not only 
directly affects the growth conditions of rice, but 
also affects the habitat of rice thrips by regulating 
soil moisture. Soil conditions are also one of the 
key factors affecting the occurrence of pests. The 
pH value, fertility, and moisture content of the 
soil directly affect the growth of rice, which 
indirectly affects the habitat of rice thrips. Soil 
conditions affect the growth stage and 
development speed of rice, which are closely 
related to the occurrence of pests. The quality, 
nutrient content, and moisture level of the soil 
will affect the number and distribution of rice 
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thrips. There are significant differences in the 
suitability of different growth stages to rice 
thrips. Rice is relatively fragile during the tillering 
and jointing stages and is more susceptible to rice 
thrips. When rice enters the heading stage, the 
vegetation structure and physiological 
characteristics of the rice field change, and the 
survival and reproduction of rice thrips are 
inhibited. Therefore, the rice growth stage 
should be considered as an important feature in 
the pest prediction model. In addition to 
environmental and crop factors, agricultural 
management measures also play a vital role in 
the occurrence of pests. Factors such as crop 
density, irrigation methods, fertilization, and 
pesticide use directly affect the ecological 
environment of rice fields, which in turn affects 
the occurrence of rice thrips. Through reasonable 
agricultural management measures, the 
occurrence of pests can be effectively controlled. 
 
Multicollinearity and feature independence 
analysis 
In the process of predicting pest occurrence, the 
independent analysis between factors is crucial. 
If there is a strong correlation between features, 
it may cause multicollinearity problems in the 
model, thus affecting the reliability of the 
prediction results. The Pearson correlation 
coefficient and variance inflation factor was used 
in this study to evaluate the independence 
between features. The Pearson correlation 
coefficient is a common method to measure the 
linear correlation between two variables and is 
expressed as follows. 
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By calculating the correlation coefficients 
between different environmental and crop 
factors, the factors that have significant linear 
relationships can be determined. If the 
correlation coefficients of some factors are high, 
those factors are redundant to a certain extent 

and can be removed or merged. The variance 
inflation factor (VIF) is a statistic used to assess 
multicollinearity. The larger the VIF value, the 
higher the correlation between the feature and 
other features. The VIF can be calculated below. 
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where 𝑅𝑗
2  is the coefficient of determination 

obtained by regressing a feature with other 
features. If the VIF value is greater than 10, it is 
generally considered that the feature has serious 
multicollinearity and may need to be adjusted in 
the model. Through independence analysis, the 
redundant relationships between features can be 
identified, and the appropriate features can be 
selected for modeling to improve the prediction 
accuracy of the model. 
 
Feature selection 
The goal of feature selection was to select the 
most important features for the occurrence of 
pests from many factors. To improve the 
accuracy and generalization ability of the model, 
chi-square test, Lasso regression, and random 
forest were applied to screen features. The Chi-
square test was used to evaluate the relationship 
between agricultural management measures and 
pest occurrence and was calculated as follows.  
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If the chi-square test result showed some 
characteristics that were significantly correlated 
with the occurrence of pests, these 
characteristics would be selected into the final 
model. The objective function of Lasso regression 
was shown below. 
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By adjusting the regularization parameter  , 
Lasso regression could effectively select the 
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features that had the most significant impact on 
the occurrence of insect pests. Random forest is 
an ensemble learning method based on decision 
trees, which makes predictions by building 
multiple decision trees and combining their 
predictions. The importance of features was 
evaluated by calculating the contribution of each 
feature to the accuracy of the decision tree.  
 
Predictive modeling approach 
After feature selection, the support vector 
machine (SVM) model was used to predict the 
occurrence probability of rice thrips pests. The 
core of SVM regression is to find an optimal 
regression hyperplane that minimizes the error 
between the predicted value and the actual 
value. The objective function of the SVM 
regression model was shown below. 
 

1

( ) ( , )
n

i i i

i

f x y K x x b
=

= +       (8) 

 
where 𝐾(𝑥𝑖 , 𝑥) was the kernel function. 𝛼𝑖  was 
the Lagrange multiplier. 𝑏 was the bias term. In 
practical applications, the Gaussian radial basis 
kernel (RBF) function was usually used as the 
kernel function and was calculated as follows. 
 

( )2
( , ) expi iK x x x x= − −‖ ‖       (9) 

 
By training the SVM regression model, the 
prediction value of each feature for the 
occurrence of pests could be obtained and 
provide a scientific basis for agricultural 
management. 
 
Integration of early warning mechanism 
In modern agricultural production, timely 
warning of pests is crucial to ensure crop yield 
and quality. The pest prediction model based on 
deep learning, spatial analysis, and 
meteorological data can provide farmers with 
accurate warning information. To achieve this 
goal, an early warning system was embedded in 
the existing pest prediction model. By combining 
spatial analysis, meteorological data, pest history 
records, and other information, the potential 

risks of pests could be timely identified and 
provide corresponding prevention and control 
measures. Pest prediction usually relies on 
multiple meteorological variables and historical 
data on pest occurrence. By establishing a pest 
occurrence probability model based on 
meteorological and environmental factors, the 
probability of pest occurrence in a certain area 
can be estimated.  
 

( ) ( ( ), ( ), ( ), ( ))P t f T t H t R t L t=    (10) 

 
where P(t) was the probability of pest occurrence 
at time t . 𝑇(𝑡) was the temperature. 𝐻(𝑡) was 
the humidity. 𝑅(𝑡)  was the amount of 
precipitation. 𝐿(𝑡) was the influencing factor of 
historical pest records. Function𝑓 was a mapping 
relationship obtained by training a machine 
learning model. Once the probability of pest 
occurrence was predicted, the risk threshold 
𝑃threshold could be set up to determine whether 
an early warning needed to be initiated. The 
specific early warning judgment conditions could 
be expressed as feed to colleagues below. 
 

Alert = {
True if 𝑃(𝑡) > 𝑃threshold

False if 𝑃(𝑡) ≤ 𝑃threshold
 (11) 

 
If Alert = True, the system would notify farmers 
of high-risk areas for pests. The early warning 
system also provided farmers with corresponding 
prevention and control measures, which were 
intelligently recommended based on the severity 
of the pests, the time of occurrence, and 
environmental conditions. A prevention and 
control strategy recommendation model based 
on risk level was then designed. When the 
probability of pest occurrence and the pest 
intensity were high, the system could 
recommend the use of pesticides for prevention 
and control.  
 

1 2 3 4( ) ( ) ( ) ( ) ( )I t w T t w H t w R t w L t=  +  +  +    (12) 

 
where  𝐼(𝑡)  was the pest intensity. 

1 2 3 4, , ,w w ww  were the weight coefficient 

obtained by model learning. When the pest 
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intensity value was high, the system would 
recommend spraying pesticides to suppress 
pests.  
 

threshold

threshold

True if I(t) I
Pesticide _ use=

False if I(t) I





 (13) 

 
When pest intensity was low and climatic 
conditions were suitable, biological control might 
be an effective alternative. The system could 
recommend appropriate biological control 
measures based on pest occurrence patterns, 
crop types, and climatic conditions as follows. 
 

True if condition=favorable for biological control
Biological _ control=

False if not favorable





(14) 

 
Some environmentally friendly non-chemical 
control measures could also be recommended 
such as physical control, reasonable crop 
rotation, etc. When the system found that pests 
occurred in the early stages of crop growth and 
climatic conditions were suitable, physical 
control through crop rotation or the use of 
barrier nets could be recommended. To improve 
the reliability and accuracy of the system, a 
circular feedback mechanism was adopted to 
continuously optimize the model parameters 
according to the actual pest occurrence situation 
to reduce false alarms and missed alarms. By 
continuously collecting information such as 
farmland monitoring data, meteorological 
changes, and pest control effects, the thresholds 
of the prediction model and prevention and 
control recommendations could be adjusted in 
real time. 
 
Study area, data collection and processing 
The data used for this study were collected from 
Zhaoqing, Guangdong, China. Zhaoqing is 
situated in the subtropical monsoon climate 
zone, characterized by high humidity and 
abundant rainfall with the average annual 
temperature approximately 22.5°C and the peak 
temperatures and pest activity typically occurring 
between June and September. All meteorological 
data, crop growth data, pest monitoring records, 

and soil parameters were sourced from local 
agricultural and meteorological monitoring 
systems with data spanning from January 2018 to 
December 2020. Meteorological variables 
including daily temperature, humidity, 
precipitation, and wind speed were retrieved 
from Guangdong Meteorological Data Service 
Platform (Guangdong Meteorological Bureau, 
Guangzhou, Guangdong, China). Crop growth 
data including rice development stages and plant 
density, as well as pest population data for rice 
thrips were sourced from the Guangdong 
Agricultural Technology Extension Center 
(Department of Agriculture and Rural Affairs of 
Guangdong Province, Guangzhou, Guangdong, 
China). Soil data including pH, nitrogen, 
phosphorus, potassium, and organic matter 
content were collected through the Guangdong 
Soil and Fertilizer Station (Guangdong 
Agricultural Resources Monitoring and 
Management Center, Guangzhou, Guangdong, 
China). Four types of data were collected 
including meteorological conditions, crop growth 
status, pest monitoring, and soil characteristics. 
In addition, pest monitoring data were collected 
daily, specifically recording the population of rice 
thrips, which served as the core target variable in 
model training and validation. Soil data were 
gathered monthly and included soil pH, nutrient 
concentrations of nitrogen, phosphorus, 
potassium, and organic matter content. The daily 
frequency of meteorological, crop, and pest data 
ensured high temporal resolution, allowing for 
precise correlation analysis between 
environmental conditions and pest outbreaks. 
Meanwhile, the monthly soil data added valuable 
contextual depth. The integration of these 
diverse but interrelated datasets formed the 
basis for a robust and dynamic pest prediction 
framework, supporting accurate modeling of rice 
thrips behavior under varying agroecological 
conditions. To better understand the overall 
distribution and variability of the datasets, a box 
plot was constructed for the four major 
categories of data. During data preprocessing, 
missing values were removed, and all continuous 
variables were standardized to bring them onto 
the   same   scale,   which   ensured   comparability 
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Figure 1. Correlation between environmental factors and pest count. 

 
 
across different data types and improved model 
convergence during training. The visual 
distribution analysis confirmed the necessity of 
robust feature selection and normalization 
techniques to handle heterogeneous data 
characteristics before applying machine learning 
algorithms. 
 
Statistical analysis 
All statistical analyses and modeling tasks were 
conducted by using Python 3.9.13 
(https://www.python.org/) and supported by 
open-source packages including scikit-learn 1.1.3 
for Lasso regression, support vector regression 
(SVR), pandas, numpy, and matplotlib for data 
handling and visualization. All software tools 
were executed using Jupyter Notebook under the 
Anaconda distribution 2022.10 (Anaconda, 
Austin, Texas, USA).  
 
 

Results and discussion 
 

Correlation analysis 
The linear relationship between each feature and 
the number of rice thrips was obtained using 
Pearson correlation analysis. The results 
demonstrated that the correlation coefficient 
between temperature and the number of rice 
thrips was 0.78, showing a strong positive 

correlation and indicating that rising 
temperature might promote the occurrence of 
pests. Humidity and precipitation were also 
positively correlated with the number of pests, 
but their correlations were slightly weaker than 
temperature at 0.65 and 0.53, respectively. The 
relationship between wind speed and the 
number of pests was more complicated with a 
correlation coefficient of -0.20, indicating that an 
increase in wind speed would have a certain 
inhibitory effect on the number of pests. The 
correlation between soil pH and the number of 
pests was low with only -0.12, indicating that the 
acidity and alkalinity of the soil had little effect on 
the occurrence of pests. The correlation 
coefficient between crop density and the number 
of pests was 0.42, indicating that, when the crop 
density was high, the possibility of pest 
occurrence also increased accordingly (Figure 1). 
Through this correlation matrix, the potential 
impact of various environmental and crop factors 
on pests were identified, which provided a 
reference for subsequent feature selection and 
model training. 
 
Independence analysis 
The variance inflation factor (VIF) values of 
different features showed that wind speed and 
soil pH had relatively low VIF values of 1.5 and 
1.4,   respectively,   indicating   that   both   factors 

https://www.python.org/
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Figure 2. The variance inflation factor (VIF) values of different features. 

 
 
were less correlated with other features and 
contributed more to the independence of the 
model (Figure 2). VIF is a common indicator for 
measuring multicollinearity between 
independent variables in a regression model, 
reflecting the degree of correlation between a 
feature and other features. The higher the VIF 
value, the stronger the correlation between the 
feature and other features, which may introduce 
multicollinearity problems and affect the stability 
and explanatory power of the regression model. 
Through VIF analysis, features that had high 
collinearity were identified and removed. The 
stability and prediction accuracy of the model 
were optimized, which improved the reliability 
and interpretability of the model. 
 
Feature selection and model building 
A total of 13 environmental and agronomic 
variables were evaluated under different 
regularization strengths as λ being set at 0.01, 
0.1, 1, 10 to determine their relative importance 
in predicting rice thrips occurrence. 
Temperature, humidity, precipitation, and crop 
density consistently maintained higher 
coefficient values across lower λ levels, indicating 
strong predictive power. Variables such as wind 
speed, soil pH, nitrogen, phosphorus, potassium 
content, leaf area index, rice growth stage, and 

field humidity were categorized as weaker 
features as their coefficients declined rapidly 
with increasing regularization and were 
eventually shrunk to zero. Wind direction was 
consistently excluded with its coefficient 
remaining zero across all λ levels, indicating 
negligible influence on pest occurrence. Although 
soil organic matter content showed minor 
influence at lower λ values, it was also classified 
as a weaker feature due to low coefficient 
magnitude. The selection process highlighted 
that temperature, humidity, precipitation, and 
crop density played a dominant role in pest 
prediction, while other environmental and soil 
variables had limited independent contribution 
when these key factors were already included. 
The feature selection results of Lasso regression 
under different regularization parameter values 
automatically selected the most important 
features through penalty terms. The results 
showed that the coefficients of temperature, 
humidity, precipitation, and crop density were 
large, indicating that these features had a strong 
effect in predicting pests. When    the values of 
these factors increased, the coefficients of other 
features gradually decreased, and finally only 
temperature, humidity, precipitation, and crop 
density were retained. Therefore, these four 
variables  were  ultimately  identified  as  optimal 
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Table 1. Prediction of pest population for 2021. 
 

Date Predicting pest population Actual pest population Error 

June 1, 2021 1,200 1,185 1.3% 
July 1, 2021 1,450 1,405 3.1% 

August 1, 2021 1,800 1,750 2.8% 
September 1, 2021 2,000 2,025 1.2% 

 
 
features. Through Lasso regression, the model 
could effectively reduce redundant features and 
the complexity of the model, thereby improve 
prediction accuracy and avoid overfitting. 
  
Model training and evaluation 
After selecting optimal features, the model was 
trained and evaluated using both training and 
test datasets. The model demonstrated strong 
predictive accuracy across both sets. On the 
training dataset, the mean squared error (MSE) 
was 0.42, and the coefficient of determination 
(R²) reached 0.88, indicating an excellent fit 
between predicted and actual pest counts. When 
tested on unseen data, the MSE was slightly 
reduced to 0.38, and the R² was 0.85, confirming 
the model's ability to generalize effectively to 
new inputs. The results suggested that the model 
not only avoided overfitting but also maintained 
stability when applied to real-world data. The 
combination of low MSE and high R² across both 
datasets highlighted the robustness of the 
proposed approach in modeling complex, 
nonlinear interactions between multiple 
environmental variables and pest behavior. By 
accurately predicting pest population dynamics, 
the SVR model provided a reliable decision-
support tool for agricultural managers to 
implement timely and targeted prevention 
measures. This capability is essential for 
minimizing crop losses and optimizing pest 
control strategies under varying climate and 
cultivation conditions. 
 
Model application and effect evaluation 
The trained SVR model was applied to the 2021 
pest prediction. The results showed that the 
model accurately predicted the number of pests 
in different months with a small error range from 
1.2 to 3.1% (Table 1). These results suggested 

that the SVR model could effectively capture the 
changing trend of the pests number, and the 
prediction error was maintained within a 
reasonable range, which proved the practical 
application ability of the model. Through the 
prediction results, agricultural managers can take 
corresponding prevention and control measures 
in advance according to the predicted number of 
pests, thereby reducing the impact of pests on 
crops. 
 
Prevention and control decision support 
Based on the pest prediction results, scientific 
prevention and control decisions for agricultural 
management can be provided. Control strategies 
of different intensities were formulated 
according to the number of pests predicted by 
the model. When the predicted number of pests 
was between 0 - 500, it was recommended to 
conduct routine monitoring and moderate 
fertilization, and the control effect was relatively 
mild. When the number of pests was between 
1,000 – 1,500, it was recommended to apply 
pesticides in advance and irrigate moderately, 
and the control effect was relatively severe. 
However, when the number of pests exceeded 
1,500, the pest control measures should be 
strengthened, and enhanced monitoring and 
emergency measures should be conducted 
(Table 2). These control measures can help 
agricultural managers respond promptly 
according to pest prediction data, thereby 
achieving refined management and improving 
crop yield and quality. The predictive 
performance of the pest detection model was 
further evaluated using a confusion matrix, which 
provided a detailed view of its classification 
accuracy in distinguishing between pest 
occurrence and non-occurrence. Based on the 
results,    the    model    correctly    identified    250 
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Table 2. Protection measures based on prediction values. 
 

Predicted pest 
population  

Recommended prevention and control 
measures 

Estimation of control effect 

0 - 500 
Regular monitoring and appropriate 

fertilization 
Minor effects, no special intervention 

required 

500 – 1,000 Increase pest monitoring frequency 
Moderate impact, prevention and treatment 

recommended 

1,000 - 1,500 
Apply pesticides in advance and irrigate 

appropriately 
Serious impact, necessary prevention and 

treatment 
> 1,500  Strengthen pest control and monitoring Extreme impact, urgent treatment required 

 
 
instances where pests were present and 660 
cases where pests did not occur using the 
confusion matrix. However, there were also 50 
false negatives that were the cases with pests 
occurring but not detected by the model and 40 
false positives that were the cases with the 
model incorrectly predicting pest presence but 
nothing happening. These results indicated that 
the model had a strong ability to differentiate 
positive and negative classes with a high number 
of true positives and true negatives. While the 
overall accuracy is commendable, the presence 
of false negatives suggested a risk of 
underestimating pest outbreaks, which might 
delay timely interventions. Similarly, false 
positives could lead to unnecessary prevention 
measures. The current confusion matrix 
highlighted the importance of further refining 
model parameters and thresholds to reduce 
misclassification. Enhancing precision and recall 
will ensure the model offers more reliable 
support for pest monitoring and control decisions 
in agricultural settings. By optimizing the model, 
the false positive and false negative rates can be 
further reduced, thereby improving the reliability 
of the prediction. 
 
Early warning system evaluation 
The evaluation results of the model under 
different risk thresholds including accuracy, 
recall, precision, F1 score, false positive rate, and 
false negative rate demonstrated that, as the 
threshold increased, the accuracy of the model 
increased, but the recall rate decreased. When 
the risk threshold was set to 0.3, the accuracy, 
recall rate, and precision rate were 0.85, 0.92, 

and 0.78, while, when the risk threshold was set 
to 0.9, the accuracy, recall rate, and precision 
rate were 0.87, 0.76, and 0.89, respectively 
(Figure 3). The evaluation results under different 
thresholds provided a basis for model tuning. The 
most appropriate threshold can be selected 
according to the specific application scenario, 
thereby balancing the accuracy and recall rate 
and maximizing the prediction efficiency of the 
model. Comparison of evaluation indicators on 
different datasets including 2022, 2023, tropical 
climate region, and the temperate climate region 
showed that the model on the 2022 dataset 
performed best with an accuracy of 0.91, a recall 
of 0.85, and an F1 score of 0.86, while the 
performance on the 2023 dataset declined 
slightly with an accuracy of 0.89, a recall of 0.82, 
and an F1 score of 0.83 (Figure 4). The evaluation 
results for the tropical climate region and the 
temperate climate region were also good, but 
there were certain regional differences, which 
might be affected by climate and environmental 
factors. These results showed that there were 
certain differences in the performance of the 
model under different datasets and 
environmental conditions. In the future, the 
model can be tuned for specific regions to 
improve its prediction ability in different 
scenarios. 
 
 

Conclusion 
 

This study proposed a prediction model for rice 
thrips pest based on multidimensional 
environmental data. Through in-depth analysis of 
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Figure 3. Evaluation under different risk thresholds. 

 
 

 
 
Figure 4. Comparison of indicators evaluation on different datasets. 

 
 
meteorological, crop growth, and soil data, a 
model that could accurately predict the 
occurrence of pests was successfully constructed. 
The results showed that temperature, humidity, 

precipitation, and crop density were important 
factors affecting the number of rice thrips. The 
proposed model demonstrated high prediction 
ability on both the training and the test datasets, 
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proving that the model could accurately capture 
the nonlinear relationship between 
environmental characteristics and pest 
occurrence. Through the prediction of pest data 
in 2021, the model showed a small error and 
provided timely decision-making support for 
agricultural management. According to different 
pest prediction results, scientific and reasonable 
prevention and control measures were 
formulated to ensure the healthy growth and 
high yield of crops. In addition, the evaluation 
under different risk thresholds showed the 
performance changes of the model under 
different circumstances. The high accuracy and 
low false positive rate showed that the model 
had strong adaptability and reliability under 
different environmental conditions. When faced 
with data from different climate regions, the 
model was able to effectively predict the 
probability of pest occurrence, proving its broad 
application prospects. Although the proposed 
pest prediction model has high accuracy and 
stability, there is still some room for 
improvement. The input features of the model 
can be further expanded to combine more 
agricultural management data and historical pest 
data to improve the prediction accuracy of the 
model. Meanwhile, the performance of the 
model can be further improved in the future 
through integrated learning methods or deep 
learning technology, especially when dealing 
with more complex climate change and crop 
growth conditions, deep learning may bring more 
significant advantages. 
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