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Mammalian Target of Rapamycin (mTOR), a key component of the PI3K/AKT/mTOR signaling pathway, plays a 
central role in tumor development. Although mTOR inhibitors such as rapamycin have been used clinically, 
limitations remain in terms of efficacy and side effects. This study integrated five machine learning algorithms 
including random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), k-nearest 
neighbor (KNN), naive Bayes (NB) and five deep learning algorithms including deep neural networks (DNN), graph 
convolutional networks (GCN), graph attention networks (GAT), message passing neural networks (MPNN), 
Attentive Fingerprint (Attentive FP) and combined molecular descriptors, molecular fingerprints, and molecular 
images to construct 28 prediction models for exploring the interactions and mechanisms between biomolecules. 
The models were comprehensively evaluated using seven evaluation indicators including F1-score, accuracy (ACC), 
balanced accuracy (BA), sensitivity (SE), specificity (SP), Matthew’s correlation coefficient (MCC), area under the 
ROC curve (AUC) to select the optimal model. In-depth analysis of the model using the SHapley additive 
exPlanations (SHAP) method revealed the key structural fragments affecting mTOR inhibition. The results showed 
that the random forest algorithm combined with the Morgan molecular fingerprint had high accuracy in predicting 
mTOR inhibitor activity and could accurately identify relevant key structural fragments. In addition, this study 
presented a user-friendly prediction platform based on the random forest algorithm, providing researchers with 
a convenient tool for quickly evaluating the mTOR inhibitory activity of compounds. These results provided 
reliable references for the discovery of new mTOR inhibitors and could facilitate new breakthroughs in the field 
of cancer treatment. 
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Introduction 
 
Mammalian Target of Rapamycin (mTOR) 
inhibitors have become the focus of research in 
the field of tumor therapy because of their critical 
roles in regulating cell growth, proliferation, and 
metabolism. mTOR, a serine/threonine kinase, is 
a core component of the phosphoinositide 3-

kinase (PI3K)/Protein Kinase B (AKT)/mTOR 
signaling pathway and plays a crucial role in the 
occurrence and development of various tumors 
[1]. Although mTOR inhibitors such as rapamycin 
and its derivatives have been used in clinical 
practice, certain limitations remain in terms of 
their efficacy and side effects [2]. Long-term 
rapamycin use may lead to immune suppression 

mailto:xjy@chnu.edu.cn


Journal of Biotech Research [ISSN: 1944-3285] 2025; 22:76-87 

 

77 

 

and the development of tumor resistance [3]. 
Further, owing to the complexity of the mTOR 
signaling pathway, traditional drug design 
methods often struggle to accurately predict the 
efficacy and side effects of drugs [4]. Therefore, 
the development of novel mTOR inhibitors with 
improved efficacy and fewer side effects is 
important for research and clinical applications. 
 
In recent years, machine learning technology has 
shown significant potential in drug design and 
discovery. By analyzing a large amount of 
compound data and biological activity 
information in detail, machine learning models 
can accurately identify potential drug candidates 
and predict their biological activities against 
specific targets [5]. This method significantly 
accelerates the drug discovery process and 
improves the accuracy and efficiency of drug 
design [6]. Stokes et al. successfully identified a 
lead compound, halicin, with broad antibacterial 
activity using a neural network model by 
analyzing phenotypic screening data [7]. Further, 
a series of machine learning-based models have 
been developed to identify novel antibacterial 
compounds that target multiple pathogens 
including those developed by Wang et al. for 
methicillin-resistant Staphylococcus aureus [8], 
Fields et al. for Pseudomonas aeruginosa [9], 
Ashdod et al. for Plasmodium falciparum [10], 
and Zheng et al. for Schistosomiasis [11]. In 
addition, Kumari et al. combined random forest 
and an autoencoder to identify 20 key molecular 
descriptors for predicting mTOR inhibitors, which 
was the first time that traditional machine 
learning combined with deep learning feature 
extraction methods [12]. Wang et al. used 
support vector machine (SVM) models to screen 
potential mTOR inhibitors and provide new 
candidate drugs for cancer treatment [13]. Zhang 
et al. used machine learning models to analyze 
gastric cancer samples and found that Acute 
Myeloid Leukemia (AML) cells with Tumor 
Protein p53 (TP53) mutations were insensitive to 
rapamycin, whereas Mouse Double Minute 2 
homolog (MDM2)-dependent cells were 
sensitive [14]. DS-5272 is a small-molecule 
MDM2 inhibitor that blocks the interaction 

between MDM2 and p53, restores the tumor 
inhibitory function of p53, enhances the efficacy 
of anticancer drugs such as rapamycin, and is 
primarily used in tumor treatment research. The 
combined treatment effect of rapamycin and DS-
5272 was studied and further evaluated. The 
Joint Non-negative Matrix Factorization (JNMF) 
algorithm was used to identify AML subtypes 
sensitive to mTOR inhibitors for predicting the 
response of patients with gastric cancer to the 
treatment. These studies demonstrated the 
diverse applications of machine learning in drug 
discovery and highlighted its important role in 
improving the efficiency and accuracy of drug 
development. 
 
This study collected data from 2,074 mTOR 
inhibitors, of which 1,962 compounds were 
active, while 112 compounds were inactive. By 
comprehensively applying various machine 
learning algorithms and deep learning 
techniques combined with three molecular 
representation methods including molecular 
descriptors, molecular fingerprints, and 
molecular images, 28 prediction models were 
constructed to explore the interactions and 
mechanisms between biomolecules in depth. The 
SHAP method was used to gain a deeper 
understanding of the underlying mechanisms of 
the constructed model and explore important 
structural fragments in the model that had 
guiding significance for optimizing lead 
compounds and designing new reagents. The 
best model was obtained based on a 
comprehensive comparison of multiple 
evaluation indicators. To further promote the 
practical application of the model, a user-friendly 
prediction platform was developed to 
conveniently predict the mTOR inhibitory 
activities of the compounds. This study provided 
a reliable reference for discovering new mTOR 
inhibitors and brought new breakthroughs in 
cancer treatment. 
 
 

Materials and methods 
 
Data collection and cleaning 
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The raw dataset was obtained from the CHEMBL 
24 (https://www.ebi.ac.uk/chembl/) database 
downloaded in April 2024 [15]. Only data 
relevant to human mTOR inhibitor experiments 
were selected. The raw data were processed by 
removing nulls and metal ions, standardizing 
each compound in the dataset to a generic 
representation using the Python Standardizer 
package  (https://github.com/flatkinson/ 
standardiser) with default parameters including 
removal of counter ions, solvent components, 
and salts, addition of hydrogen atoms, and 
neutralization of charge by addition or 
subtraction of atoms, removing duplicate values, 
retaining compounds with a clear bioassay value 
(assay type B) such as half maximal inhibitory 
concentration (IC50), half maximal effective 
concentration (EC50), dissociation constant (Kd), 
and inhibition constant (Ki) while removing 
compounds lacking any bioassay data, removing 
duplicates and molecules with molecular weights 
greater than 1,000 Da, and taking the average of 
these reported bioassay values as the final value 
if a molecule had multiple bioactivity data points. 
The compounds with criteria values less than or 
equal to 10,000 were set to 1 and labeled as 
active substances, whereas the others were set 
to 0 and labeled as inactive substances. These 
steps were designed to clean and process the 
data for obtaining reliable and analyzable 
compound data, which formed the basis for 
further research and analysis. A schematic 
diagram of research on the prediction of mTOR 
inhibitors was shown in Figure 1. 
 
Molecular representation calculations 
Molecular representation plays a crucial role in 
developing reliable and robust quantitative 
structure–activity relationship (QSAR) models, 
and its quality greatly affects the accuracy of the 
predictions made by these models. To fully 
explore the chemical information of molecules, 
three different types of features were used to 
describe them including molecular descriptors, 
molecular fingerprints, and molecular graphs. 
Molecular fingerprints included the Morgan 
fingerprint that was similar to extended-
connectivity fingerprints (ECFP) (1,024 bits) [16], 

the Molecular ACCess System (MACCS) key (166 
bits) [17], the Atomparis fingerprint (2,048 bits) 
[18], and the RDKIT descriptor [19]. For a given 
molecule, the molecule graph comprised two 
matrices including an N × N adjacency matrix A, 
which was used to represent the graphical 
structure of the molecule, and an N × F node 
feature matrix X, where N was the number of 
nodes and F was the number of node features. 
The node feature matrix contained atomic 
features such as atom type, formal charge, 
hybridization, number of bound hydrogens, 
aromaticity, degree, hydrogen number, chirality, 
and partial charge. Edge features included 
information such as bond type, whether the 
paired atoms were in the same ring, whether the 
bonds were conjugated, and the stereo 
configuration of the bonds [20]. These features 
were typically represented as unique heat codes 
to represent the information in the molecular 
graph for further analysis and prediction in the 
QSAR model. The combined use of different 
types of molecular features could improve the 
model performance and accuracy, leading to a 
better understanding and prediction of the 
biological activities and properties of 
compounds. In this study, DeepChem 
(https://deepchem.io/) (version 2.5.0) was used 
to generate molecular graph-based 
representations. 
 
Machine learning algorithms and model 
construction 
Five classical machine learning algorithms 
including RF [21], SVM [22], XGBoost, KNN [23], 
NB [24] and five deep learning algorithms 
including DNN [25], GCN [26], GAT [27], MPNN 
[28], Attentive FP [29] were used to construct a 
predictive model for distinguishing between 
activity and inactivity regarding mTOR. The 
classical machine learning models, RF, SVM, KNN, 
and NB were constructed using the Scikit-Learn 
framework (https://scikit-learn.org/) [30], while 
the XGBoost model was developed using the 
XGBoost Python package [31]. All models based 
on molecular descriptors and fingerprints as well 
as deep learning models for graph neural 
network (GNN) were trained on a 11th  Gen  Intel 
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Figure 1. Schematic diagram of research on predicting novel mTOR inhibitors. 

 
 
CoreTM i5 computer with 16 GB RAM and 512 GB 
SSD hard drive under WIN10 operating system 
and integrated graphics. 28 predictive models 
were developed based on three different types of 
molecular features including molecular 
descriptors, molecular fingerprints, molecular 
graphs, five selected deep learning algorithms, 
and five machine learning algorithms (Figure 2). 
All models were selected based on F1 scores [32]. 

Model performance evaluation 
The performance of the classification models was 
evaluated using the evaluation metrics of 
specificity (SP), sensitivity (SE), accuracy (ACC), 
F1-score, Matthew’s correlation coefficient 
(MCC), balanced accuracy (BA), area under the 
ROC curve (AUC) as follows. 
 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                              (1) 
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Figure 2. Model construction process. 

 
 

𝑆𝐸 =
𝑇𝑁

𝑇𝑃+𝐹𝑁
               (2) 

 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑇+𝐹𝑁
                                              (3) 

 

𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
=

2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
           (4) 

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃

√(𝑇𝑃+𝐹𝑁)×(𝑇𝑃+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)
    (5) 

 

𝐵𝐴 =
𝑇𝑃𝑅+𝑇𝑁𝑅

2
=

𝑆𝐸+𝑆𝑃

2
                                           (6) 

 
where the numbers of true positives, true 
negatives, false positives, and false negatives 
were represented as TP, TN, FP, and FN, 
respectively. 
 
Prediction platform design 
The mTOR inhibition activity prediction platform 
developed in this study was based on the PyQt5 
(https://www.riverbankcomputing.com/softwar
e/pyqt/intro) framework and implemented a 
user-friendly and easy-to-use interface. This 
platform allowed users to input simplified 
molecular input linear expression (SMILES) 
strings, which were converted into molecular 
objects using the MolFromSmiles (smi) function 
in the RDKit library (https://www.rdkit.org/), 
laying the foundation for subsequent processing. 
Furthermore, by using RDKit's AllChem, the 
GetMorgan FingerprintAsBitVect function, the 
molecular objects were converted into molecular 

fingerprints, and the key chemical features of 
molecules were extracted to provide rich 
structural information for machine learning 
models. These molecular fingerprints were input 
as feature vectors into a pretrained random 
forest model to predict the mTOR inhibitory 
activity. This model was optimized to effectively 
identify the key structural fragments related to 
mTOR inhibition and predict the probability of 
molecular activity. To further enhance the user 
experience and assist in molecular activity 
analysis, the platform integrated the function of 
generating molecular structure images, allowing 
users to intuitively understand molecular 
features, thereby enhancing the user experience. 
Through model calculations, the system output 
predicted activity probabilities, providing users 
with a comprehensive mTOR inhibition activity 
prediction tool. These designs improved the 
accuracy of predictions as well as enhanced the 
user's analytical experience through intuitive 
molecular structure images. 
 
 

Results and discussion 
 

Dataset analysis 
In the processed dataset, 1,962 compounds were 
identified as active (inhibitors), while 112 
compounds were identified as inactive (non-
inhibitors). The proportion of active compounds 
in the total sample was as high as 94.6%, 

https://www.riverbankcomputing.com/software/pyqt/intro
https://www.riverbankcomputing.com/software/pyqt/intro
https://www.rdkit.org/


Journal of Biotech Research [ISSN: 1944-3285] 2025; 22:76-87 

 

81 

 

reflecting the significant advantage of the active 
compounds in the sample. Considering the 
natural distribution, the dataset was not 
artificially balanced by adding theoretical 
pseudomolecules. The compounds in the dataset 
exhibited a wide range of molecular weights 
(MW) from 144.176 to 966.226, and AlogP values 
were from -2.870 to 8.263. LogP is the logarithm 
of the partition coefficient of a compound 
between octanol and water, which is an 
important indicator of molecular lipophilicity 
(hydrophobicity). AlogP is a calculation method 
to predict logP using the atom additive method. 
It estimates the logP of the entire molecule by 
summing up the contribution values of each 
atom and combining them with the empirical 
parameters. The larger the logP (or Alogp), the 
more lipophilic and hydrophobic is the molecule. 
The smaller the logP, the more hydrophilic is the 
molecule. In drug development, logP is usually 
used to evaluate the absorption, permeability, 
and drug formation of molecules. The obtained 
molecular weights and AlogP values indicated 
that the compounds in the modeling dataset 
covered a broad chemical space. This chemical 
diversity was crucial for constructing accurate 
predictive models. Each dataset was randomly 
divided into two subsets including the training set 
(80%) and testing set (20%). The molecular 
weight and AlogP values, which together defined 
the dimensions of the chemical space, were 
calculated using the RDKit software. After 
cleaning, the dataset for subsequent model 
construction was chosen. 
 
Performance of molecular descriptor-based 
predictive models 
Six predictive models were constructed based on 
RDKIT descriptors. In this study, five machine 
learning algorithms and one deep learning 
algorithm (RF, SVM, XGBoost, KNN, NB, and DNN) 
were used. For classical machine learning 
algorithms, the SelectPercentile module in the 
Scikit-Learn package with the percentage set to 
30% was used to select the optimized RDKIT 
descriptors as input features for the model. Each 
model comprised a combination of a specific 
molecular representation and a machine learning 

algorithm (e.g., RF: Rdkit). The results showed 
that RF and SVM demonstrated good 
performance on multiple evaluation metrics. In 
particular, the random forest algorithm achieved 
an ACC of 0.962, an F1 score of 0.980, and an AUC 
as high as 0.997 (Table 1). Considering various 
indicators, the random forest algorithm was the 
best performing choice. 
 
Performance of molecular fingerprint-based 
predictive models 
Based on three molecular fingerprints (Morgan, 
MACCS, and AtomPairs), five machine learning 
algorithms and one deep learning algorithm (RF, 
SVM, XGBoost, KNN, NB, and DNN) were used to 
construct 18 predictive models. The RF algorithm 
exhibited excellent performance for the three 
fingerprint-based models when applied to the 
mTOR dataset. Compared with the other five 
machine learning algorithms, the RF algorithm 
achieved an average F1 score of 0.979, an 
average BA of 0.607, and an average AUC of 
0.892, yielding excellent results for all metrics. 
The results showed that RF outperformed the 
other models in classification on this dataset. 
Notably, the RF algorithm performed particularly 
well on the Morgan fingerprint-based model, 
achieving the highest ACC of 0.959 and a very 
high F1 score of 0.979 on the modeled dataset, 
which indicated that the model possessed a high 
rate of prediction accuracy and exhibited 
outstanding performance in terms of BA and SE. 
Further, the performance of the XGBoost 
algorithm achieved an average F1 score of 0.978, 
which was lower only than that of the RF 
algorithm, while its average AUC was as high as 
0.881 (Table 1). 
 
Performance of molecular graph-based 
predictive models 
Recently, GNN and their variants have been 
widely used in tasks related to drug discovery 
[33]. A significant advantage of GNN over 
traditional predefined molecular descriptors or 
fingerprints is the ability to automatically learn 
task-specific molecular representations through 
the graph-convolution mechanism [34]. Various 
GNN  models  and  their  variants  including  GNN, 
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Table 1. Evaluation of the test dataset. 
 

Molecular Features Algorithms ACC F1 scores BA SE SP MCC AUC 

Morgan 

RF 0.959 0.979 0.622 0.995 0.250 0.407 0.882 

SVM 0.954 0.977 0.525 1.000 0.050 0.218 0.840 

XGBoost 0.957 0.978 0.574 0.997 0.150 0.323 0.881 

KNN 0.947 0.972 0.664 0.977 0.350 0.364 0.843 

Nb 0.911 0.953 0.597 0.944 0.250 0.169 0.597 

DNN 0.952 0.975 0.975 0.990 0.961 0.296 0.906 

Mean 0.947 0.972 0.660 0.984 0.335 0.296 0.825 

MACCS 

RF 0.959 0.979 0.599 0.997 0.200 0.388 0.892 

SVM 0.954 0.977 0.525 1.000 0.050 0.218 0.840 

XGBoost 0.957 0.978 0.574 0.997 0.150 0.323 0.881 

KNN 0.957 0.978 0.550 1.000 0.100 0.309 0.847 

Nb 0.200 0.275 0.580 0.159 1.000 0.095 0.799 

DNN 0.952 0.975 0.976 1.000 0.952 0.000 0.987 

Mean 0.830 0.860 0.634 0.859 0.409 0.222 0.874 

AtomPairs 

RF 0.959 0.979 0.599 0.997 0.200 0.388 0.902 

SVM 0.954 0.977 0.525 1.000 0.050 0.218 0.840 

XGBoost 0.957 0.978 0.574 0.997 0.150 0.323 0.881 

KNN 0.959 0.979 0.694 0.987 0.400 0.476 0.874 

Nb 0.706 0.821 0.703 0.706 0.700 0.188 0.703 

DNN 0.952 0.975 0.975 0.990 0.961 0.296 0.904 

Mean 0.914 0.951 0.678 0.946 0.410 0.315 0.851 

Molecular Graph 

AttentiveFP 0.952 0.975 0.976 1.000 0.952 0.000 0.745 

GAT 0.957 0.978 0.978 0.997 0.959 0.323 0.782 

GCN 0.940 0.969 0.969 0.977 0.960 0.218 0.798 

MPNN 0.952 0.975 0.976 1.000 0.952 0.000 0.499 

Mean 0.950 0.974 0.975 0.994 0.956 0.135 0.706 

Rdkit 

RF 0.962 0.980 0.624 0.997 0.250 0.444 0.881 

SVM 0.954 0.977 0.525 1.000 0.050 0.218 0.840 

XGBoost 0.957 0.978 0.574 0.997 0.150 0.323 0.881 

KNN 0.957 0.978 0.621 0.992 0.250 0.378 0.654 

Nb 0.954 0.977 0.525 1.000 0.050 0.218 0.780 

DNN 0.952 0.975 0.975 1.000 0.952 0.000 0.767 

Mean 0.956 0.978 0.641 0.998 0.284 0.264 0.801 

 
 
GAT, MPNN, Attentive FP) have demonstrated 
excellent state-of-the-art accuracy in various 
molecular property prediction tasks and are 
often used to compare the performance of 
different algorithms or models on the same 
dataset or task. In the tasks of drug discovery and 
molecular property prediction [35]. In this 
research, four deep learning algorithms of GCN, 
GAT, MPNN, and Attentive FP were employed to 
construct four molecular graph-based models 
(Figure 3). Overall, the GAT model exhibited 
excellent or near-optimal performance for most 

evaluation metrics. Specifically, this model 
achieved a high mean F1 score of 0.978 and BA of 
0.978, demonstrating its power in classification 
tasks. In contrast, although the Attentive FP 
achieved a perfect 1.000 on the SE metric and the 
GCN was similar or slightly superior to the GAT in 
terms of SP as 0.960 and AUC as 0.798, their 
overall performance remained slightly inferior. 
The performance of MPNN was relatively weak 
for all metrics, especially when dealing with more 
complex tasks, in which the performance gap was 
more pronounced. 
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Figure 3. Metrics of deep learning models. 

 
 
Optimal models 
The comparison of the constructed molecular 
descriptor-, molecular fingerprint-, and 
molecular graph-based predictive models 
showed that the RF algorithm outperformed the 
other five machine learning methods in the 
descriptor- and molecular fingerprint-based 
models with significantly higher mean metrics for 
the F1 score, BA, and AUC. Further, the extreme 
gradient boosting algorithm achieved excellent 
results for this dataset (Table 1). Among the 
constructed graph-based models, GAT 
outperformed three other deep learning 
methods of GCN, MPNN, and Attentive FP. In this 
dataset, descriptor- and fingerprint-based 
models typically exhibited a superior 
performance compared to that of graph-based 
models, which suggested that deep learning 
methods failed to outperform classical machine 
learning methods in this scenario, particularly 
XGBoost and RF, which were the two most 
effective algorithms. This result was consistent 
with the results of a recent systematic 
comparative study [36]. 

Interpretations of the optimal model 
The SHAP method was used to explore important 
structural fragments in the model to gain a 
deeper understanding of the intrinsic 
mechanisms of the constructed model. Given 
that the combination of RF and the Morgan 
fingerprint model exhibited excellent predictive 
performance, SHAP's TreeExplainer method was 
used to identify the key local structures in the 
model. By calculating the SHAP values, the top 20 
structural fragments with significant favorable or 
unfavorable effects on mTOR inhibition were 
successfully screened and visualized. The results 
showed that some of the fingerprints were 
mainly concentrated in the positive region, 
whereas the others were mainly distributed in 
the negative region. Specifically, fingerprints of 
Morgan_926, Morgan_896, Morgan_831, 
Morgan_361, and Morgan_935 were in the 
positive region, suggesting that molecules 
containing these structural fragments had a 
higher probability of exhibiting anti-tumor 
activity. In contrast, fingerprints of Morgan_64, 
Morgan_548,   Morgan_435,   Morgan_175,   and 
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Figure 4. Random forest: Morgan model of the top 20 most important features. (a) SHAP values for each molecular substructure. Red and blue 
indicated the magnitude of the eigenvalue. The darker the red color is, the larger the eigenvalue is. (b) the average of the absolute SHAP values 
for each molecular substructure. Red indicated the presence of the structural fragment with the feature value of 1. Blue indicated the absence of 
the structural fragment with the feature value of 0. 

 
 
Morgan_267 were in the negative region, 
implying a lower probability that the structural 
fragments predicted by the model had an 
inhibitory effect on tumor cells (Figure 4). These 
results provided important insights into the 
relationship between molecular structure and 
anti-tumor activity. By analyzing the chemical 
structures of two common mTOR inhibitors, 
WYE-687 and KU-0063784, the results found that 
both contained the Morgan_935, Morgan_361, 
and Morgan_896 fingerprints, which were 
favorable for anti-tumor activity, as well as the 
Morgan_926, Morgan_831, and Morgan _361 
fingerprints. Moreover, they did not contain the 
Morgan_64, Morgan_548, Morgan_435, 
Morgan_175, and Morgan_267 fingerprints, 
which were unfavorable for anti-tumor activity 
(Figure 5). These results suggested that both 
inhibitors could effectively inhibit mTOR. These 
results were highly consistent with the 
predictions of proposed model and experimental 
data of this study, further validating the model 
accuracy. These findings provided important 
guidance for the selection and optimization of 
mTOR inhibitors. 

Conclusion 
 
This study combined five machine learning 
algorithms and five deep learning algorithms to 
successfully construct 28 prediction models 
based on molecular descriptors, molecular 
fingerprints, and molecular graphs. By analyzing 
the data of 2,074 mTOR inhibitors and comparing 
the models using seven evaluation metrics, the 
results showed that the random forest algorithm 
combined with the Morgan molecular fingerprint 
model outperformed other models based on 
molecular descriptors and molecular graphs in 
terms of predictive performance, demonstrating 
its potential for identifying the key structural 
fragments related to mTOR inhibition. For a 
deeper understanding of the mechanisms 
underlying the constructed model, the SHAP 
method was used to explore important structural 
fragments in the model that had guiding 
significance for optimizing lead compounds and 
designing new reagents. A novel mTOR inhibitor 
prediction platform was developed using the 
random forest algorithm, providing researchers 
with  a  convenient tool for rapidly evaluating the 
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Figure 5. Random forest: Important molecular substructures of Morgan's model and chemical structures of common mTOR inhibitors. 

 
 
mTOR inhibitory activities of the compounds. 
This research not only laid the foundation for the 
discovery of new mTOR inhibitors but also 
provided new ideas for personalized and precise 
cancer treatment. Future research is needed to 
further optimize the model and expand the 
dataset for improved accuracy and reliability of 
predictions, thereby promoting the translation of 
mTOR inhibitors to clinical applications. 
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