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Accurate segmentation of wheat foliar diseases and pest damage is crucial for effective crop management and 
disease control. However, pest damage typically comprises only a small fraction of the labeled pixels. This extreme 
pixel-level imbalance poses a significant challenge to segmentation performance, potentially leading to overfitting 
to common classes and underlearning of rare classes, thus degrading overall performance. This research proposed 
a random projected copy-and-paste (RPCP) augmentation technique to address the pixel imbalance problem. The 
rare pest damage patches were extracted from annotated training images and applied random geometric 
transformations to simulate variations. The transformed patches were then passed into appropriate regions while 
avoiding overlaps with lesions or existing damaged regions. In addition, a random projection filter was applied to 
the pasted regions, refining local features and ensuring a natural blend with the new background. The results 
showed that the proposed method substantially improved segmentation performance on the pest damage class, 
while maintaining or even slightly enhancing accuracy on other categories. The results highlighted the 
effectiveness of targeted augmentation in mitigating extreme pixel imbalance, offering a straightforward effective 
solution for agricultural segmentation problems. 
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Introduction 
 
Wheat is one of the most widely cultivated crops 
and a key source of dietary calories worldwide [1, 
2]. However, its yield and grain quality are often 
threatened by a variety of diseases and pests, 
leading to substantial economic losses and 
posing serious challenges to global food security 
[3, 4]. Early and accurate detection of these 
threats is essential for effective crop protection, 
timely intervention, and sustainable 
management practices. Recent advances in deep 

learning have enabled automated perception 
and analysis in agricultural vision tasks, providing 
an efficient and scalable alternative to traditional 
manual inspection [5, 6].  
 
Among various computer vision approaches, 
semantic segmentation has emerged as a 
powerful tool for pixel-wise recognition of 
disease and pest symptoms, enabling fine-
grained characterization of lesion morphology 
and spatial distribution [7-9]. Despite its 
potential, applying semantic segmentation to 
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wheat foliar disease datasets remains challenging 
due to large intraclass variation and severe class 
imbalance. Visual symptoms can differ 
significantly in size and appearance, complicating 
pixel-wise recognition. Rare classes such as pest 
damage often occupy only a tiny fraction of 
annotated pixels. This extreme pixel-level 
imbalance results in biased optimization, leading 
models to overfit on dominant classes and 
neglect rare classes. Even state-of-the-art models 
such as SegFormer achieve high accuracy on 
common classes like healthy tissue and septoria 
tritici blotch (STB) lesions [10], their performance 
on pest damage regions remains substantially 
lower [11]. 
 
To address these challenges, this research 
proposed a targeted data augmentation strategy 
of random projected copy-and-paste (RPCP), 
which explicitly increased the representation of 
rare classes for training by using a public wheat 
foliar disease segmentation dataset containing 3 
classes of healthy leaves, STB lesions, and pest 
damage [12]. The generality of the proposed 
approach was assessed by comparing with 
multiple representative segmentation models. 
This research proposed a model-agnostic 
strategy that could be seamlessly integrated into 
diverse existing training pipelines without 
requiring extra annotations or introducing 
architectural changes. Through extensive 
evaluations on multiple representative models, 
the proposed method consistently improved 
rare-class accuracy without compromising 
common class performance, highlighting its 
strong generalization capability.  
 
 

Materials and methods 
 
Research subjects 
This study investigated semantic segmentation 
for a specific type of wheat foliar disease, 
septoria tritici blotch (STB), and pest damage. 
Given an RGB image I ∈RH × W × 3, the objective 
of this study was to predict a per-pixel label map 
Y ∈ {0, 1, ..., C}, where each label corresponded 
to one of C semantic classes such as healthy leaf, 

disease lesions, and pest damage. This task 
exhibited a pronounced class imbalance because 
pest damage regions were extremely scarce and 
characterized by irregular and localized patterns. 
Such rare class pixels were typically small and 
provided limited training information, leading to 
sub-optimal segmentation performance. To 
mitigate this issue, the study proposed a random 
projected copy-and-paste (RPCP) augmentation 
strategy to enhance the representation of pest 
damage regions. 
 
Development of RPCP method 
To address the significant class imbalance in 
wheat foliar disease segmentation, particularly 
the under representation of regions with pest 
damage, a targeted data augmentation pipeline 
was developed, which enriched training images 
with additional rare-class instances through a 
two-stage process of category aware patch 
extraction and spatially constrained pasting. In 
the category aware patch extraction stage, 
annotated images were scanned to identify 
regions belonging to underrepresented classes, 
which were then cropped into patches with 
corresponding binary masks. In the spatially 
constrained pasting stage, each patch was 
independently transformed by random rotation 
and scaling and subsequently pasted into 
contextually appropriate locations. The 
candidate paste regions were restricted to valid 
areas like healthy leaf regions, while avoiding 
overlapping with existing rare class regions to 
preserve structural integrity. The pasting 
operation was parameterized by (x, y, s, θ), 
where (x, y) specified the placement position, s 
controlled the scaling factor, and θ denoted the 
rotation angle. While class-aware augmentation 
directly improved class balance, the copy–paste 
operation introduced artifacts and texture 
inconsistencies, potentially harming model 
generalization. To address these issues, a 
localized refinement method was introduced, 
which operated only on pasted regions, altering 
their local appearance while preserving semantic 
structure. The random convolution was an 
effective data augmentation approach, which 
could  distort  local  textures  while preserving the 
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overall shape [13-19]. This study applied random 
projection to the pasted regions in augmented 
images, enabling the creation of visually diverse 
appearances while maintaining label consistency. 
Given the augmented image I′ ∈ RH × W × C and 
its patch mask YP ∈ {0, 1} H × W, a random 
projection filter Θ ∈ Rh × w × C × C was generated, 
where H, W, and C were the height, width, and 
channels of I′, respectively, while h and w were 
the height and width of Θ. The weights of Θ were 
randomly sampled from a Gaussian distribution 
N (0, σ2) with the hyper-parameter σ controlling 
the perturbation magnitude. The overall 
proposed RPCP framework was shown in Figure 
1. 
 
Experimental dataset 
The experiments were conducted using STB 
dataset introduced by Zenkl et al. [13], which was 
a high-resolution image dataset specifically 
curated for semantic segmentation tasks of 
wheat foliar disease and pest damage. The 
dataset comprised 422 RGB images of wheat 
leaves captured under diverse lighting conditions 
with a resolution of 1,024 × 1,024 pixels. For the 
semantic segmentation task, each image was 
densely annotated with pixel-level masks for 
three semantic classes including healthy leaf 
area, necrotic tissue, and pest damage. Notably, 
the STB dataset exhibited a significant class 
imbalance, where healthy leaf regions 

dominated the pixel distribution, while pest 
damage appeared sparsely. The skewed 
distribution introduced a strong bias toward 
majority classes, often resulting in poor 
performance on rare categories. 
 
Baseline comparison  
A set of representative semantic segmentation 
models were selected as the baselines including 
both convolutional and transformer-based 
architectures. PSPNet [20], CCNet [21], and the 
DeepLabV3 series [22, 23] were adopted as the 
representative CNN-based models with 
multiscale context modules and encoder–
decoder designs, while SegFormer [24] and SAN 
[25] were employed for transformer-based 
approaches. In addition, advanced architectures 
such as SegNeXt [26] and ConvNeXt [27] were 
included, which combined the efficiency of CNN 
architectures with transformer-inspired 
contextual modeling to enhance segmentation 
performance. 
 
Model implementation 
All models were trained by using the 
MMSegmentation framework built upon PyTorch 
[28-31]. AdamW optimizer (https://docs.pytorch. 
org/docs/stable/generated/torch.optim.AdamW
.html) was adopted with learning rates from 3e-5 
to 1e-4 and weight decay values from {0.0001, 
0.0005, 0.001}.  Experiments  were  conducted  by 

https://docs.pytorch.org/docs/stable/generated/torch.optim.AdamW.html
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Table 1. Overall model performance.  
 

Method 
Class 1 Class 2 Class 3 Average 

IoU Acc IoU Acc IoU Acc mIoU mAcc 

DeepLabV3 97.60 98.28 81.96 87.08 57.79 72.19 79.12 85.85 

w/RPCP 97.78 99.18 82.17 87.76 61.76 77.14 80.57 88.03 

Δ (+0.18) (+0.90) (+0.21) (+0.68) (+3.97) (+4.95) (+1.45) (+2.18) 

DeepLabV3+ 97.29 98.45 81.93 88.29 58.89 75.61 79.37 87.45 

w/RPCP 97.75 99.03 84.47 89.85 62.32 78.99 81.51 89.29 

Δ (+0.46) (+0.58) (+2.54) (+1.56) (+3.43) (+3.38) (+2.14) (+1.84) 

PSPNet 97.48 99.02 82.75 88.71 60.91 74.32 80.38 87.35 

w/RPCP 97.64 98.89 83.78 90.41 64.38 78.96 81.93 89.42 

Δ (+0.16) (-0.13) (+1.03) (+1.70) (+3.47) (+4.64) (+1.55) (+2.07) 

CCNet 97.60 98.11 84.08 91.62 60.22 75.93 80.63 88.55 

w/RPCP 97.79 98.92 84.98 91.10 64.50 82.08 82.42 90.70 

Δ (+0.19) (+0.81) (+0.90) (-0.52) (+4.28) (+6.15) (+1.79) (+2.15) 

SAN 97.53 98.85 83.14 90.10 62.73 76.18 81.13 88.38 

w/RPCP 97.57 98.90 83.20 90.17 65.86 77.32 82.21 88.80 

Δ (+0.04) (+0.05) (+0.06) (+0.07) (+3.13) (+1.14) (+1.08) (+0.42) 

SegFormer 97.38 98.01 82.73 90.12 68.16 79.87 82.76 89.33 

w/RPCP 97.98 99.12 85.82 91.67 72.36 82.57 85.39 91.12 

Δ (+0.60) (+1.11) (+3.09) (+1.55) (+4.20) (+2.70) (+2.63) (+1.79) 

ConvNeXt 98.00 98.85 85.18 91.57 70.67 84.31 84.62 91.58 

w/RPCP 98.00 99.43 85.46 89.09 74.30 84.58 85.92 91.03 

Δ (+0.00) (+0.58) (+0.28) (-2.48) (+3.63) (+0.27) (+1.30) (-0.55) 

SegNeXt 97.93 99.06 85.32 91.45 72.81 81.56 85.35 90.69 

w/RPCP 98.01 98.97 86.04 92.87 75.62 84.40 86.56 92.08 

Δ (+0.08) (-0.09) (+0.72) (+1.42) (+2.81) (+2.84) (+1.21) (+1.39) 
Notes: Green numbers indicated improvement, red numbers indicated decrease. Δ indicated the change relative to the baseline. 

 
 
using batch sizes {4, 8, 16}. During the training 
process, input images were first randomly resized 
within a scale ratio range of [0.5, 2.0], then 
randomly cropped to 512 × 512 pixels followed 
by horizontal flipping with a probability of 0.5 and 
color jittering to enhance robustness to 
illumination changes. 
 
 

Results and discussion 
 
The segmentation performance of all baseline 
models and their RPCP-enhanced variants 
demonstrated that, for healthy leaf (Class 1), all 
methods achieved very high intersection over 
union (IoU) and accuracy (Acc) values with 
differences generally below 1%, indicating that 
this class was well-represented and easy to 
segment. Lesion region (Class 2) exhibited 

moderate variation across models, while all IoU 
values remained above 81%. In contrast, pest 
damage (Class 3) showed the largest 
performance gaps, reflecting the difficulty of 
segmenting underrepresented features. Among 
the baselines, SegNeXt achieved the strongest 
Class 3 performance with 72.81% of IoU and 
81.56% of Acc followed closely by ConvNeXt with 
70.67% of IoU and 84.31% of Acc (Table 1). The 
results showed that introducing RPCP 
consistently improved Class 3 results across a 
wide range of backbones, highlighting the 
robustness of the proposed augmentation. The 
largest IoU gains were observed in CCNet as 
+4.28% and SegFormer as +4.20%, while 
DeepLabV3+ (+3.43%) and PSPNet (+3.47%) also 
exhibited substantial improvements. Moreover, 
the results on common classes indicated that 
RPCP did not sacrifice performance where 
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training data was already abundant. Overall, 
RPCP yielded clear benefits in both average loU 
(mIoU) and ACC (mAcc) for most models. 
SegFormer achieved an mIoU increase from 
86.26% to 88.89% (+2.63%) and an mAcc increase 
from 87.54% to 89.33% (+1.79%). Although a 
slight decline was observed in the overall 
performance of ConvNeXt, the general trend 
confirmed that RPCP was effective in enhancing 
rare class segmentation while maintaining or 
improving accuracy for dominant classes. 
 
The comparison for infected leaf detection 
showed that RPCP method for detecting 
damaged parts of leaf focused on all parts of leaf 
that could not contribute to the photosynthesis 
process, the main function of the leaf on the 
plant, whereas the method developed by Nazare 
et al. only considered the damaged leaf as the 
destroyed one [32]. According to anatomical 
concept of the plant, the proposed method of 
this study came up with an accurate leaf disease 
detection rate of 26.25% compared to the 
method of Nazare that took the tested leaf as a 
healthy one. The proposed method was 
confirmed with accurate and efficient detection.  
 
This research proposed a rare-class–oriented 
augmentation framework (RPCP) for wheat leaf 
disease segmentation. By combining category-
aware copy-paste with random-projection 
refinement, RPCP generated realistic augmented 
images that enhanced the representation of rare 
classes. Extensive experiments across diverse 
segmentation methods demonstrated that RPCP 
consistently improved rare class performance 
while maintaining accuracy on common classes. 
These results highlighted RPCP as a scalable and 
model-agnostic augmentation strategy for robust 
plant pathology segmentation. 
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