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Accurate segmentation of wheat foliar diseases and pest damage is crucial for effective crop management and
disease control. However, pest damage typically comprises only a small fraction of the labeled pixels. This extreme
pixel-level imbalance poses a significant challenge to segmentation performance, potentially leading to overfitting
to common classes and underlearning of rare classes, thus degrading overall performance. This research proposed
a random projected copy-and-paste (RPCP) augmentation technique to address the pixel imbalance problem. The
rare pest damage patches were extracted from annotated training images and applied random geometric
transformations to simulate variations. The transformed patches were then passed into appropriate regions while
avoiding overlaps with lesions or existing damaged regions. In addition, a random projection filter was applied to
the pasted regions, refining local features and ensuring a natural blend with the new background. The results
showed that the proposed method substantially improved segmentation performance on the pest damage class,
while maintaining or even slightly enhancing accuracy on other categories. The results highlighted the
effectiveness of targeted augmentation in mitigating extreme pixel imbalance, offering a straightforward effective
solution for agricultural segmentation problems.
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Introduction learning have enabled automated perception
and analysis in agricultural vision tasks, providing
Wheat is one of the most widely cultivated crops an efficient and scalable alternative to traditional
and a key source of dietary calories worldwide [1, manual inspection [5, 6].
2]. However, its yield and grain quality are often
threatened by a variety of diseases and pests, Among various computer vision approaches,
leading to substantial economic losses and semantic segmentation has emerged as a
posing serious challenges to global food security powerful tool for pixel-wise recognition of
[3, 4]. Early and accurate detection of these disease and pest symptoms, enabling fine-
threats is essential for effective crop protection, grained characterization of lesion morphology
timely intervention, and sustainable and spatial distribution [7-9]. Despite its
management practices. Recent advances in deep potential, applying semantic segmentation to
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wheat foliar disease datasets remains challenging
due to large intraclass variation and severe class
imbalance. Visual symptoms can differ
significantly in size and appearance, complicating
pixel-wise recognition. Rare classes such as pest
damage often occupy only a tiny fraction of
annotated pixels. This extreme pixel-level
imbalance results in biased optimization, leading
models to overfit on dominant classes and
neglect rare classes. Even state-of-the-art models
such as SegFormer achieve high accuracy on
common classes like healthy tissue and septoria
tritici blotch (STB) lesions [10], their performance
on pest damage regions remains substantially
lower [11].

To address these challenges, this research
proposed a targeted data augmentation strategy
of random projected copy-and-paste (RPCP),
which explicitly increased the representation of
rare classes for training by using a public wheat
foliar disease segmentation dataset containing 3
classes of healthy leaves, STB lesions, and pest
damage [12]. The generality of the proposed
approach was assessed by comparing with
multiple representative segmentation models.
This research proposed a model-agnostic
strategy that could be seamlessly integrated into
diverse existing training pipelines without
requiring extra annotations or introducing
architectural changes. Through extensive
evaluations on multiple representative models,
the proposed method consistently improved
rare-class accuracy without compromising
common class performance, highlighting its
strong generalization capability.

Materials and methods

Research subjects

This study investigated semantic segmentation
for a specific type of wheat foliar disease,
septoria tritici blotch (STB), and pest damage.
Given an RGB image | ERH x W x 3, the objective
of this study was to predict a per-pixel label map
Y € {0, 1, ..., C}, where each label corresponded
to one of C semantic classes such as healthy leaf,
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disease lesions, and pest damage. This task
exhibited a pronounced class imbalance because
pest damage regions were extremely scarce and
characterized by irregular and localized patterns.
Such rare class pixels were typically small and
provided limited training information, leading to
sub-optimal segmentation performance. To
mitigate this issue, the study proposed a random
projected copy-and-paste (RPCP) augmentation
strategy to enhance the representation of pest
damage regions.

Development of RPCP method

To address the significant class imbalance in
wheat foliar disease segmentation, particularly
the under representation of regions with pest
damage, a targeted data augmentation pipeline
was developed, which enriched training images
with additional rare-class instances through a
two-stage process of category aware patch
extraction and spatially constrained pasting. In
the category aware patch extraction stage,
annotated images were scanned to identify
regions belonging to underrepresented classes,
which were then cropped into patches with
corresponding binary masks. In the spatially
constrained pasting stage, each patch was
independently transformed by random rotation
and scaling and subsequently pasted into
contextually  appropriate  locations.  The
candidate paste regions were restricted to valid
areas like healthy leaf regions, while avoiding
overlapping with existing rare class regions to
preserve structural integrity. The pasting
operation was parameterized by (x, y, s, 9),
where (x, y) specified the placement position, s
controlled the scaling factor, and 6 denoted the
rotation angle. While class-aware augmentation
directly improved class balance, the copy—paste
operation introduced artifacts and texture
inconsistencies, potentially harming model
generalization. To address these issues, a
localized refinement method was introduced,
which operated only on pasted regions, altering
their local appearance while preserving semantic
structure. The random convolution was an
effective data augmentation approach, which
could distort local textures while preserving the
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overall shape [13-19]. This study applied random
projection to the pasted regions in augmented
images, enabling the creation of visually diverse
appearances while maintaining label consistency.
Given the augmented image I’ € RH x W x C and
its patch mask YP € {0, 1} H x W, a random
projection filter © € Rh x w x C x C was generated,
where H, W, and C were the height, width, and
channels of I, respectively, while h and w were
the height and width of ©. The weights of @ were
randomly sampled from a Gaussian distribution
N (0, 02) with the hyper-parameter o controlling
the perturbation magnitude. The overall
proposed RPCP framework was shown in Figure
1.

Experimental dataset

The experiments were conducted using STB
dataset introduced by Zenkl et al. [13], which was
a high-resolution image dataset specifically
curated for semantic segmentation tasks of
wheat foliar disease and pest damage. The
dataset comprised 422 RGB images of wheat
leaves captured under diverse lighting conditions
with a resolution of 1,024 x 1,024 pixels. For the
semantic segmentation task, each image was
densely annotated with pixel-level masks for
three semantic classes including healthy leaf
area, necrotic tissue, and pest damage. Notably,
the STB dataset exhibited a significant class
imbalance, where healthy leaf regions

Target Images
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dominated the pixel distribution, while pest
damage appeared sparsely. The skewed
distribution introduced a strong bias toward
majority classes, often resulting in poor
performance on rare categories.

Baseline comparison

A set of representative semantic segmentation
models were selected as the baselines including
both convolutional and transformer-based
architectures. PSPNet [20], CCNet [21], and the
DeeplabV3 series [22, 23] were adopted as the
representative CNN-based models  with
multiscale context modules and encoder—
decoder designs, while SegFormer [24] and SAN
[25] were employed for transformer-based
approaches. In addition, advanced architectures
such as SegNeXt [26] and ConvNeXt [27] were
included, which combined the efficiency of CNN
architectures with transformer-inspired
contextual modeling to enhance segmentation
performance.

Model implementation

All models were trained by using the
MMSegmentation framework built upon PyTorch
[28-31]. AdamW optimizer (https://docs.pytorch.
org/docs/stable/generated/torch.optim.AdamW
.html) was adopted with learning rates from 3e
to le* and weight decay values from {0.0001,
0.0005, 0.001}. Experiments were conducted by
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Table 1. Overall model performance.

Method Class 1 Class 2 Class 3 Average
loU Acc loU Acc loU Acc mioU mAcc
DeeplLabV3 97.60 98.28 81.96 87.08 57.79 72.19 79.12 85.85
w/RPCP 97.78 99.18 82.17 87.76 61.76 77.14 80.57 88.03
A (+0.18) (+0.90) (+0.21) (+0.68) (+3.97) (+4.95) (+1.45) (+2.18)
DeeplLabV3+ 97.29 98.45 81.93 88.29 58.89 75.61 79.37 87.45
w/RPCP 97.75 99.03 84.47 89.85 62.32 78.99 81.51 89.29
A (+0.46) (+0.58) (+2.54) (+1.56) (+3.43) (+3.38) (+2.14) (+1.84)
PSPNet 97.48 99.02 82.75 88.71 60.91 74.32 80.38 87.35
w/RPCP 97.64 98.89 83.78 90.41 64.38 78.96 81.93 89.42
A (+0.16) (-0.13) (+1.03) (+1.70) (+3.47) (+4.64) (+1.55) (+2.07)
CCNet 97.60 98.11 84.08 91.62 60.22 75.93 80.63 88.55
w/RPCP 97.79 98.92 84.98 91.10 64.50 82.08 82.42 90.70
A (+0.19) (+0.81) (+0.90) (-0.52) (+4.28) (+6.15) (+1.79) (+2.15)
SAN 97.53 98.85 83.14 90.10 62.73 76.18 81.13 88.38
w/RPCP 97.57 98.90 83.20 90.17 65.86 77.32 82.21 88.80
A (+0.04) (+0.05) (+0.06) (+0.07) (+3.13) (+1.14) (+1.08) (+0.42)
SegFormer 97.38 98.01 82.73 90.12 68.16 79.87 82.76 89.33
w/RPCP 97.98 99.12 85.82 91.67 72.36 82.57 85.39 91.12
A (+0.60) (+1.12) (+3.09) (+1.55) (+4.20) (+2.70) (+2.63) (+1.79)
ConvNeXt 98.00 98.85 85.18 91.57 70.67 84.31 84.62 91.58
w/RPCP 98.00 99.43 85.46 89.09 74.30 84.58 85.92 91.03
A (+0.00) (+0.58) (+0.28) (-2.48) (+3.63) (+0.27) (+1.30) (-0.55)
SegNeXt 97.93 99.06 85.32 91.45 72.81 81.56 85.35 90.69
w/RPCP 98.01 98.97 86.04 92.87 75.62 84.40 86.56 92.08
A (+0.08) (-0.09) (+0.72) (+1.42) (+2.81) (+2.84) (+1.21) (+1.39)

Notes: Green numbers indicated improvement, red numbers indicated decrease. A indicated the change relative to the baseline.

using batch sizes {4, 8, 16}. During the training
process, input images were first randomly resized
within a scale ratio range of [0.5, 2.0], then
randomly cropped to 512 x 512 pixels followed
by horizontal flipping with a probability of 0.5 and
color jittering to enhance robustness to
illumination changes.

Results and discussion

The segmentation performance of all baseline
models and their RPCP-enhanced variants
demonstrated that, for healthy leaf (Class 1), all
methods achieved very high intersection over
union (loU) and accuracy (Acc) values with
differences generally below 1%, indicating that
this class was well-represented and easy to
segment. Lesion region (Class 2) exhibited
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moderate variation across models, while all loU
values remained above 81%. In contrast, pest
damage (Class 3) showed the largest
performance gaps, reflecting the difficulty of
segmenting underrepresented features. Among
the baselines, SegNeXt achieved the strongest
Class 3 performance with 72.81% of loU and
81.56% of Acc followed closely by ConvNeXt with
70.67% of loU and 84.31% of Acc (Table 1). The
results showed that introducing RPCP
consistently improved Class 3 results across a
wide range of backbones, highlighting the
robustness of the proposed augmentation. The
largest loU gains were observed in CCNet as
+4.28% and SegFormer as +4.20%, while
DeeplabV3+ (+3.43%) and PSPNet (+3.47%) also
exhibited substantial improvements. Moreover,
the results on common classes indicated that
RPCP did not sacrifice performance where
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training data was already abundant. Overall,
RPCP yielded clear benefits in both average loU
(mloU) and ACC (mAcc) for most models.
SegFormer achieved an mloU increase from
86.26% to 88.89% (+2.63%) and an mAcc increase
from 87.54% to 89.33% (+1.79%). Although a
slight decline was observed in the overall
performance of ConvNeXt, the general trend
confirmed that RPCP was effective in enhancing
rare class segmentation while maintaining or
improving accuracy for dominant classes.

The comparison for infected leaf detection
showed that RPCP method for detecting
damaged parts of leaf focused on all parts of leaf
that could not contribute to the photosynthesis
process, the main function of the leaf on the
plant, whereas the method developed by Nazare
et al. only considered the damaged leaf as the
destroyed one [32]. According to anatomical
concept of the plant, the proposed method of
this study came up with an accurate leaf disease
detection rate of 26.25% compared to the
method of Nazare that took the tested leaf as a
healthy one. The proposed method was
confirmed with accurate and efficient detection.

This research proposed a rare-class—oriented
augmentation framework (RPCP) for wheat leaf
disease segmentation. By combining category-
aware copy-paste with random-projection
refinement, RPCP generated realistic augmented
images that enhanced the representation of rare
classes. Extensive experiments across diverse
segmentation methods demonstrated that RPCP
consistently improved rare class performance
while maintaining accuracy on common classes.
These results highlighted RPCP as a scalable and
model-agnostic augmentation strategy for robust
plant pathology segmentation.
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