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Music intervention has been widely recognized as an effective means of emotional regulation for mental health. 
However, existing evaluation methods mainly rely on subjective self-reports, lacking objectivity and real-time 
tracking capabilities. To address this limitation, this study proposed a quantitative evaluation system for music-
induced emotional regulation effects based on the fusion of multimodal physiological signal features, which 
addressed the limitations of traditional subjective questionnaires by constructing an objective assessment 
framework using multimodal physiological responses. The system synchronously collected four types of 
physiological signals including electroencephalogram (EEG), electrocardiogram (ECG), electrodermal activity 
(EDA), and electromyography (EMG). The study also applied an improved deep forest algorithm for feature 
selection and dimensionality reduction. A temporal convolutional network (TCN) was employed to extract 
spatiotemporal features from EEG signals, while phase locking value (PLV) was used to quantify functional 
connectivity between brain regions. For ECG, an adaptive heartbeat segmentation algorithm was developed to 
enhance the robustness of heart rate variability (HRV) features. A novel multi-source attentional feature fusion 
(MAFF) mechanism was introduced to learn dynamic cross-modal feature weights using a gated recurrent unit 
(GRU), enabling optimized multimodal feature integration. A regression estimator based on a gradient boosting 
decision tree (GBDT) was constructed within a valence-arousal dimensional emotion model and evaluated using 
transfer learning on the database for emotion analysis using physiological signals (DEAP) and PMEmo datasets. 
The results showed that the proposed system achieved mean squared error (MSE) of 0.0410 (valence) and 0.0380 
(arousal) with R² values of 0.81 and 0.83 respectively on the DEAP dataset, significantly outperforming unimodal 
approaches. The MAFF mechanism reduced the arousal MSE from 0.0462 to 0.0380, representing a 17.8% 
improvement. After fine-tuning on the PMEmo dataset via transfer learning, the model achieved further MSE 
reductions to 0.0380 (valence) and 0.0361 (arousal), demonstrating strong generalization and robustness across 
datasets. By bridging the gap between physiological signals and emotional states, this study provided a reliable 
objective quantitative benchmark for music therapy and offered a promising technical reference for future 
affective computing research in mental health care. 
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Introduction 
 
In  today’s  rapidly  evolving  society,  emotional 

problems have become a major factor affecting 
mental health and quality of life. Effectively 
assessing and regulating individual emotional 
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states has emerged as a key research focus across 
psychology, neuroscience, and artificial 
intelligence (AI). Music as a unique form of art 
has been widely recognized for its role in emotion 
induction and regulation [1, 2]. In recent years, 
music-based interventions have been 
increasingly applied in psychotherapy, emotion 
management, and health promotion, 
demonstrating significant potential as a non-
pharmacological approach [3]. However, current 
evaluation methods for music-induced emotional 
regulation rely heavily on subjective 
questionnaires or interviews. These methods are 
often biased and inconsistent, making it difficult 
to achieve objective, continuous, and 
personalized tracking of emotional changes [4]. 
 
With the continuous integration of AI and 
affective computing, multimodal emotion 
recognition has emerged as a prominent 
research focus. Udahemuka et al. highlighted 
that visual cues, acoustic features, and 
physiological signals each possessed distinct 
advantages in emotional expression. The 
integration of these factors effectively overcame 
the limitations of single-modal approaches in 
emotion recognition [5]. Kim et al. proposed a 
dual-function music classification system based 
on physiological signal features by analyzing 
parameters of electroencephalogram (EEG) and 
electrodermal activity (EDA). The system enabled 
automatic recognition and recommendation of 
music emotion types [6]. However, current 
studies still mainly focus on static emotion 
classification and lack continuous modeling and 
evaluation of the emotion regulation process. In 
the area of music and physiological signal 
integration, Yin et al. proposed a large-scale 
emotion recognition framework that combined 
music content with EDA signals. The research 
employed deep neural networks to jointly model 
musical audio features and physiological 
response patterns, exploring the mapping 
between emotional labels and multidimensional 
feature spaces [7]. However, the framework 
lacked comprehensive modeling of other 
physiological channels such as EEG and 
electrocardiogram (ECG). Focusing on the key 

technologies underpinning multimodal emotion 
recognition, Zhu et al. provided a systematic 
review of current deep learning models, feature 
selection mechanisms, and fusion strategies used 
in emotion analysis and emphasized that the 
major challenges in multimodal fusion included 
inter-modal inconsistency, synchronization 
discrepancies, and redundancy in high-
dimensional feature spaces [8]. In the field of 
multi-source physiological signal fusion, Zhu et al. 
proposed the multi-language font generation 
network (MF-Net) model, which integrated EEG, 
ECG, and electromyography (EMG) signals using 
residual structures and attention mechanisms to 
achieve efficient fusion of emotional features [9]. 
However, the model still has room for 
improvement in temporal dependency modeling 
and feature selection. Additionally, Du et al. 
conducted an empirical study on emotional 
responses induced by traditional Chinese-style 
music and developed a hybrid model combining 
one-dimensional convolutional neural network 
(CNN) and bidirectional long short-term memory 
network (Bi-LSTM) to analyze EEG data from 
university students. The model achieved dual 
classification in the valence and arousal 
dimensions, demonstrating the influence of 
musical cultural context on the transferability of 
emotion recognition models [10]. In the context 
of attention-based fusion, Ghaleb et al. explored 
joint modeling strategies for audio and visual 
cues and introduced attention mechanisms to 
enhance the model’s sensitivity to emotionally 
salient segments [11]. Although their study 
focused on audiovisual modalities, its proposal of 
temporal selective modeling offered valuable 
insights for dynamically capturing salient 
features in physiological signals. Similarly, Yang 
et al. developed a mobile-based emotion 
recognition method that integrated behavioral 
data with physiological signals. Their work 
demonstrated the potential of lightweight deep 
models for use in wearable devices, highlighting 
the need to balance computational efficiency 
with model performance in future emotion 
recognition systems [12]. In terms of cross-modal 
coordination strategies for multimodal emotion 
recognition, Vamsidhar et al. proposed a 
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hierarchical cross-modal attention mechanism. 
Through dual-channel audio pathway modeling, 
the approach achieved fine-grained emotional 
semantic extraction and improved semantic 
alignment across modalities [13]. Although the 
work was primarily applied to affective 
computing tasks, the proposed mechanism 
provided theoretical basis and feasible technical 
approach for addressing the heterogeneity of 
multi-source physiological signals. Although 
traditional emotion recognition methods have 
achieved certain progress using unimodal signals, 
they still face limitations due to the complexity of 
emotional responses and individual variability. 
The accuracy and robustness of these 
approaches remain to be significantly improved 
[14].  
 
Compared to unimodal signals, multimodal 
physiological signals offer stronger 
representational capacity in terms of information 
richness and response specificity. EEG captures 
real-time cortical activity, making it suitable for 
tracking the spatiotemporal dynamics of 
emotional states. Heart rate variability (HRV) 
derived from ECG reflects the autonomic nervous 
system’s response to emotional stimuli. EDA as a 
direct indicator of sympathetic nervous activity is 
commonly used to assess emotional arousal 
levels [15]. Surface EMG measures facial or bodily 
muscle activity, which is closely linked to 
emotional experience [16]. Therefore, 
integrating features from multiple physiological 
sources enables multi-perspective modeling and 
more accurate evaluation of music-induced 
emotional regulation. However, one of the key 
challenges in multimodal fusion lies in the 
heterogeneity across signal channels including 
differences in sampling rates, signal patterns, 
response latencies, and noise distributions [17]. 
Traditional fusion strategies often fail to 
effectively capture inter-modal relationships, 
leading to feature redundancy or information 
loss, which limits both the expressiveness and 
generalization capacity of the model [18]. 
 
This study aimed to address the limitations of 
traditional emotional assessment methods by 

developing a quantitative evaluation system for 
music-induced emotional regulation effects 
based on multimodal physiological signal fusion 
to provide an objective, accurate, and 
personalized description of emotional state 
changes. The study adopted a temporal 
convolutional network (TCN) to extract 
spatiotemporal features, which introduced a 
novel multi-source attentional feature fusion 
(MAFF) mechanism, leveraged gated recurrent 
units (GRUs) to dynamically learn cross-modal 
weights, and constructed a regression model 
combined with a gradient boosting decision tree 
(GBDT). This study provided a reliable objective 
quantitative benchmark for the evaluation of 
music therapy effects and offered a robust 
methodological framework for solving the 
problem of multi-source heterogeneous data 
fusion in affective computing, thereby promoting 
its practical application in the field of mental 
health monitoring. 
 
 

Materials and methods 
 
Data resources and preprocessing 
The public accessible Database for Emotion 
Analysis using Physiological signals (DEAP) 
(https://www.eecs.qmul.ac.uk/mmv/datasets/d
eap/) and PMEmo (http://huisblog.cn/PMEmo/) 
were employed in this research as the data 
resources. DEAP dataset was used for proposed 
model construction [19], while PMEmo dataset 
was used to verify the generalization ability of the 
proposed model when dealing with single-modal 
and cross-dataset scenarios [20]. All data were 
uniformly processed using a fifth-order zero-
phase bandpass filter. The EEG, ECG, EMG signals 
were filtered within 1 - 45 Hz, 0.5 - 40 Hz, 20 - 150 
Hz, respectively, while the EDA signals 
underwent high-pass filtering at 0.05 Hz to 
remove baseline drift [21]. For noise reduction, 
independent component analysis (ICA) was 
applied to EEG channels to eliminate artifacts 
caused by eye movements, blinks, and muscle 
activity. ECG signals were processed using an 
adaptive threshold detection algorithm to extract 
the R-peak sequence and remove motion 

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
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artifacts, providing a foundation for subsequent 
heart rate variability analysis. For time 
synchronization, the system employed a trigger 
pulse-based marking mechanism. All modal 
signals were aligned at event trigger points and 
segmented accordingly. Each segment 
corresponded to a 30-second music excerpt, 
forming a data window for unified feature 
extraction. Additionally, all signal samples were 
normalized using the z-score method to ensure 
comparability of amplitude features across 
different modalities as follows [22]. 

 

𝑍𝑖 =
𝑥𝑖−𝜇

𝜎
                                                            (1) 

 
where 𝑥𝑖  was the sample value of the original 
signal. 𝜇  was the mean value of the signal 
channel. 𝜎  was the standard deviation. 𝑍𝑖  was 
the normalized value. To minimize the impact of 
invalid samples on model performance, the 
system set artifact detection thresholds. If more 
than 25% of data points in a segment exceeded 
physiologically plausible limits such as EEG 
amplitude beyond ± 100 μV or abnormal ECG 
rhythm, the segment was automatically marked 
as invalid and excluded. During EDA 
preprocessing, transient changes in skin 
conductance were extracted using a peak 
detection algorithm, and their rates of change 
were calculated via a sliding window approach. 
For EMG signals, after bandpass filtering, 
rectification and moving average smoothing 
were applied to enhance the distinguishability of 
muscle contraction activity. To facilitate unified 
feature extraction, multimodal signals within 
each time window were converted into a 
standardized data frame structure that contained 
four types of synchronized time-series data with 
the sampling frequency of all signals unified to 
256 Hz. For EEG signals, the data structure 
included raw signals from 32 channels and was 
formatted as [𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 32] . ECG signals were 

recorded with a single lead and formatted as 
[𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 1] . EDA was also recorded with a 

single channel and formatted as [𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 1] . 

EMG signals were collected from 8 channels on 
the face and upper limbs to capture muscle 

activity with a data format of [𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 8]. This 

unified matrix representation ensured that the 
subsequent feature extraction module could 
efficiently process multi-source heterogeneous 
data. 
 
Feature extraction 
To comprehensively evaluate the regulatory 
effects of music stimuli on emotions, this study 
designed a customized multimodal physiological 
feature extraction method, which encompassed 
time-domain, frequency-domain, and 
spatiotemporal dynamic features combined with 
neural network architectures to enhance the 
representation of higher-order features. The 
proposed method constructed separate feature 
extraction pipelines for EEG, ECG, EDA, and EMG 
signals, which were ultimately integrated into a 
unified multimodal fusion module, serving as the 
input for subsequent modeling and evaluation. In 
EEG signal processing, temporal convolutional 
network (TCN) was used to extract its temporal 
and spatial dynamic characteristics using causal 
convolution structure to maintain sequence 
order and improving deep feature transmission 
ability through residual connection. Letting the 

EEG signal segment be the matrix 𝑋𝐸𝐸𝐺 ∈ 𝑅𝑇×C, 
where 𝑇  was the number of time steps and 𝐶 
was the number of channels, the characteristic 
expression of TCN extraction was shown below. 

 

𝐻(𝑙) = 𝑅𝑒𝐿𝑈(𝑊(𝑙) ∗ 𝐻(𝑙−1) + 𝑏(𝑙))              (2) 
 
where 𝐻(0) = 𝑋𝐸𝐸𝐺 . 𝑊(𝑙)  was the convolution 
kernel of the 𝑙 -th layer. ∗ was one-dimensional 
convolution operation. 𝑅𝑒𝐿𝑈 was the activation 

function. 𝑏(𝑙)  was the bias term. TCN structure 
effectively captured the time delay correlation 
and, at the same time, had a longer receptive 
field to describe the dynamic adjustment process 
of music to EEG [23]. Meanwhile, to model the 
functional connection between EEG multi-brain 
regions, this study calculated the degree of phase 
synchronization between channels and 
quantified the coupling relationship between 
channels by using phase locking value (PLV). 
Letting the instantaneous phases of two EEG 
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channel signals obtained by Hilbert transform be 
𝜙1(𝑡) and 𝜙2(𝑡), respectively, the definition of 
PLV was then as follows. 
 

𝑃𝐿𝑉 = |
1

𝑁
∑ 𝑒𝑗(𝜙1(𝑡)−𝜙2(𝑡))𝑁
𝑡=1 |                         (3) 

 
where 𝑗 was imaginary unit. 𝑁 was the length of 
time window. The closer the PLV value was to 1, 
the stronger the phase synchronization between 
the two brain regions, reflecting the neural 
coupling characteristics related to emotional 
processing. For ECG signal, to extract the 
characteristics of heart rate variability (HRV), an 
adaptive heartbeat detection algorithm was 
designed to identify the peak value of R wave 
based on the change of waveform slope. Letting 
R-R interval sequence be {𝑅𝑅1, 𝑅𝑅2, ⋯ , 𝑅𝑅𝑛} , 
the basic time-domain characteristics of HRV 
including average RR interval 𝑅𝑅̅̅ ̅̅  and standard 
deviation 𝑆𝐷𝑁𝑁 were shown as follows. 
 

𝑅𝑅̅̅ ̅̅ =
1

𝑛
∑ 𝑅𝑅𝑖
𝑛
𝑖=1                                               (4) 

 

𝑆𝐷𝑁𝑁 = √
1

𝑛−1
∑ (𝑅𝑅𝑖
𝑛
𝑖=1 − 𝑅𝑅̅̅ ̅̅ )2                   (5) 

 
In addition, frequency domain features such as 
low-frequency power and high-frequency power 
were extracted, and the RR interval sequence 
was transformed into frequency domain by fast 
Fourier transform (FFT) to calculate its power 
spectral density. In EDA signal processing, the 
study focused on two indicators including rapid 
skin conductance response (SCR) and slowly 
changing skin conductance level (SCL) [24]. SCR 
was composed of discrete peak response of skin 
electricity, which usually reflected the 
instantaneous activation state of autonomic 
nervous system. Letting the peak response 
sequence be {𝑝1, 𝑝2, ⋯ , 𝑝𝑚}, the SCR frequency 
per unit time was then defined below. 

 

𝑆𝐶𝑅𝑓𝑟𝑒𝑞 =
𝑚

∆𝑡
                                                     (6) 

 
where ∆𝑡 was the length of observation time. SCL 
was the average value of the signal in the 

window, which was used to measure the degree 
of baseline activation. EMG signal characteristics 
were mainly based on the amplitude and power 
characteristics of muscle potential, which was full 
wave rectified and smoothed by moving average. 
Letting the processed EMG signal be 𝑠(𝑡) , the 
root mean square (RMS) was defined below. 

 

𝑅𝑀𝑆 = √
1

𝑇
∑ 𝑠(𝑡)2𝑇
𝑡=1                                      (7) 

 
Meanwhile, to enhance the time-frequency 
characterization of muscle activity patterns, 
short-time Fourier transform (STFT) was applied 
to extract the temporal evolution of energy 
distribution [25].  

 
The Feature Dimension Reduction and Selection 
The layered structure of deep forest was 
introduced to perform multi-layer nonlinear 
mapping and screening on the original feature 
matrix. Letting the initial input feature be 𝑋 ∈

𝑅𝑛×𝑑, where 𝑛 was the number of samples and 
𝑑 was the feature dimension, the output feature 
representation of the 𝑙 -th layer was shown as 
follows. 

 

𝐻(𝑙) = 𝐹(𝑙)(𝐻(𝑙−1))                                          (8) 
 
where 𝐹(𝑙)  was the 𝑙 -layer deep forest 

transformation operation. 𝐻(0) = 𝑋 . Each layer 
of deep forest included several decision tree sub-
models, whose structure dynamically 
determined the number of layers and forest 
depth through cross-validation, learned 
nonlinear feature combinations layer by layer 
and output class confidence vectors. On the 
candidate feature set of deep forest output, 
mutual information was further introduced as a 
feature selection criterion to measure the 
correlation between individual features and 
emotional tags. Letting the characteristic variable 
be 𝑋𝑖  and the label variable be 𝑌 , the mutual 
information between them was then defined 
below. 

 

𝐼(𝑋𝑖; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log⁡(
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)𝑦∈𝑌𝑥∈𝑋𝑖
             (9) 
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where 𝑝(𝑥, 𝑦)  was a joint probability 

distribution. 𝑝(𝑥)  and 𝑝(𝑦)  were edge 
distribution functions, respectively. The greater 
the mutual information, the stronger the 
predictive power of features on labels. If the 
threshold was set as 𝜃 , only the values that 
satisfied 𝐼(𝑋𝑖; 𝑌) > 𝜃  features were kept and 
used for subsequent modeling. In addition to the 
static selection mechanism, to enhance the 
cooperative expression ability of cross-modal 
features, this study further introduced the neural 
attention mechanism and dynamically learned 
the importance weight of each modal feature 
channel through the time memory ability of the 
gated cycle unit [26]. Letting the input be the 
multi-modal fusion feature sequence 𝑍 =
{𝑧1, 𝑧2, ⋯ , 𝑧𝑇}, the GRU unit state update of each 
step was shown as follows. 
 

𝑟𝑡 = 𝜎(𝑊𝑟𝑧𝑡 + 𝑈𝑟ℎ𝑡−1)                                     (10) 
 
𝑧𝑡 = 𝜎(𝑊𝑧𝑧𝑡 + 𝑈𝑧ℎ𝑡−1)                                     (11) 
 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑧𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ℎ𝑡−1))           (12) 
 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡                (13) 
 
where 𝑟𝑡 and 𝑧𝑡 were reset gate and update gate. 
⊙  was Hadamard product. 𝑊  and 𝑈  were 
trainable weight matrices. By finally hiding the 
attention weight vector 𝛼  of state ℎ𝑇 , the 
dynamic importance of each channel could be 
calculated as follows. 
 

𝛼𝑖 =
exp⁡(𝑤𝑇ℎ𝑖)

∑ exp⁡(𝑤𝑇ℎ𝑗)
𝑇
𝑗=1

                                                  (14) 

 
where 𝑤  was a trainable parameter vector. 𝛼𝑖 
was the contribution degree of the 𝑖-th channel 
in the whole sequence.  
 
Regression Model Construction 
After feature dimensionality reduction via deep 
forest and dynamic fusion through the MAFF 
mechanism, a regression estimator based on 
gradient boosting decision tree (GBDT) was 
constructed to map the optimized fused features 

to the two-dimensional valence-arousal 
emotional space. As a powerful ensemble 
learning algorithm, GBDT was employed as the 
final regression predictor in this framework to 
achieve quantitative output of music-induced 
emotional regulation effects. According to 
Russell’s circumplex model of affect [27], the 
valence dimension described the pleasantness of 
emotions, ranging from negative such as sadness 
and stress to positive such as happiness and 
relaxation. The arousal dimension reflected the 
intensity of physiological and psychological 
activation, ranging from low arousal such as 
calmness and drowsiness to high arousal such as 
excitement and tension. These two orthogonal 
dimensions formed a continuous space, which 
could effectively map and quantify the complex 
emotional states induced by music. Letting the 

training sample set be {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , where 𝑥𝑖 ∈

𝑅𝑑 was the multimodal fusion feature vector of 
the 𝑖 -th sample, and 𝑦𝑖 ∈ 𝑅2  was the 
corresponding emotion tag vector including two 
dimensions of potency and arousal, the GBDT 
model constructed the final prediction function 
by superimposing 𝑀 -tree learning tree 𝑓𝑚  as 
follows. 

 

𝑦̂𝑖 = ∑ 𝑓𝑚(𝑥𝑖),
𝑀
𝑚=1 𝑓𝑚 ∈ 𝐹                                  (15) 

 
where 𝐹 was the function space of the regression 
tree. The goal of the model was to minimize the 
loss function 𝐿 , and the square error loss was 
usually selected as follows. 
 

𝐿 = ∑ ‖𝑦𝑖 − 𝑦̂𝑖‖
2𝑁

𝑖=1                                       (16) 
 
During the training process, each iteration 
updated the model by fitting the current residual 

𝑟𝑖
(𝑚)

 as follows. 

 

𝑟𝑖
(𝑚)

= 𝑦𝑖 − 𝑦̂𝑖
(𝑚−1)

                                            (17) 

 

𝑓𝑚 = 𝑎𝑟𝑔min
𝑓∈𝐹

∑ (𝑟𝑖
(𝑚)

− 𝑓(𝑥𝑖))
2𝑁

𝑖=1            (18) 

 

𝑦̂𝑖
(𝑚)

= 𝑦̂𝑖
(𝑚−1)

+ 𝜂𝑓𝑚(𝑥𝑖)                                   (19) 
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where 𝜂 was the learning rate, which was used to 
control the contribution of each tree to the 
overall model and prevent over-fitting. Aiming at 
multi-dimensional emotional output, the model 
adopted multi-task learning structure, optimized 
titer and arousal as two regression tasks, and 
captured the potential correlation between them 
by using shared tree structure. The loss function 
was extended to the weighted sum of two-
dimensional outputs as below. 
 

𝐿 = ∑ (𝛼‖𝑦𝑖
𝑣𝑎𝑙𝑒𝑛𝑐𝑒 − 𝑦̂𝑖

𝑣𝑎𝑙𝑒𝑛𝑐𝑒‖
2
+ (1 −𝑁

𝑖=1

𝛼) ‖𝑦𝑖
𝑎𝑟𝑜𝑢𝑠𝑎𝑙 − 𝑦̂𝑖

𝑎𝑟𝑜𝑢𝑠𝑎𝑙‖
2
)                             (20) 

 
where 𝛼 ∈ [0,1]  was a hyperparameter for 
adjusting the weights of two tasks. At the input 
end of the model, the multi-modal feature 
vectors were extracted and screened, and the 
features were normalized by the system to 
ensure that all input variables were at similar 
numerical scales to avoid unstable training 
caused by differences in feature scales. The 
minimum-maximum normalization method was 
adopted in the normalization process as follows. 
 

𝑥𝑖
𝑛𝑜𝑟𝑚 =

𝑥𝑖−min⁡(𝑋)

max(𝑋)−min⁡(𝑋)
                                  (21) 

 
where min⁡(𝑋) and max(𝑋) were the minimum 
and maximum values of the characteristic 
column, respectively. The training of GBDT model 
adopted greedy segmentation strategy layer by 
layer. Aiming at the training samples of current 
nodes, the decline of loss function was 
maximized by selecting the optimal features and 
segmentation points. The goal of node division 
was to maximize information gain as defined 
below. 
 

∆𝐿 = 𝐿𝑝𝑎𝑟𝑒𝑛𝑡 − (𝐿𝑙𝑒𝑓𝑡 + 𝐿𝑟𝑖𝑔ℎ𝑡)                 (22) 

 
where 𝐿𝑝𝑎𝑟𝑒𝑛𝑡, 𝐿𝑙𝑒𝑓𝑡  and 𝐿𝑟𝑖𝑔ℎ𝑡  were the square 

error losses of the parent node and the left and 
right child nodes, respectively. By traversing all 
possible segmentation points and features, the 
partition scheme that maximized ∆𝐿  was 
selected. To prevent over-fitting, regularization 

terms were introduced into the model including 
the maximum depth limit of the tree, the 
minimum sample size limit of leaf nodes, and L2 
regularization of leaf weights as shown below. 

 

Ω(𝑓) = 𝛾T +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1                              (23) 

 
where 𝑇 was the number of leaf nodes. 𝑤𝑗  was 

the weight of the j-th leaf. 𝛾  and 𝜆  were 
regularization hyperparameters to adjust the 
complexity of the model respectively. 
 
Experimental setup and implementation 
protocol 
All experiments in this study were conducted in a 
unified computing environment to ensure the 
fairness of results. The hardware platform was 
equipped with an Intel Core i9-10900K CPU and 
an NVIDIA GeForce RTX 3090 GPU (24 GB video 
memory). The software environment was based 
on the 64-bit Windows 10 operating system using 
Python 3.8 programming language. The deep 
learning model was built on the PyTorch 1.10 
framework, and GBDT was implemented using 
the Scikit-learn 1.0 library (https://scikit-
learn.org). To evaluate the model performance, a 
10-fold cross-validation strategy was adopted. 
The dataset was randomly divided into a training 
set (80%), a validation set (10%), and a test set 
(10%). To verify the superiority of the proposed 
method, traditional support vector machine 
(SVM), shallow multimodal fusion models, and a 
deep forest model without an attention 
mechanism were selected as comparative 
baselines in the study. All comparative 
experiments used the same preprocessed data 
and evaluation metrics. 

 
Experimental comparison model and evaluation 
index 
The baseline models and performance evaluation 
metrics for comparative verification were first 
clarified. To verify the advancement of the 
proposed method, it was compared with 
traditional single-modal model, shallow 
multimodal fusion model, and deep forest 
without attention mechanism. Traditional single- 

https://scikit-learn.org/
https://scikit-learn.org/
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Table 1. Paired t-test statistical significance analysis results of proposed method and other baseline models on DEAP dataset. 
 

Comparison Valence Awakening degree 

t-value P value t-value P value 

Proposed method vs. Single modality EEG -12.45 < 0.001 -14.21 < 0.001 

Proposed method vs. Single modality ECG -15.82 < 0.001 -16.03 < 0.001 

Proposed method vs. SVM baseline -18.33 < 0.001 -19.45 < 0.001 

Proposed method vs. Multimodal (w/o attention) -4.12 < 0.01 -5.67 < 0.001 
Note: a negative t-value indicated that the error of the proposed method was significantly lower than that of the comparative model. 

 
 
modal model used support vector regression 
(SVR) for EEG and ECG data, respectively. This 
model is implemented based on the Scikit-learn 
machine learning library. Shallow multimodal 
fusion model directly concatenated the extracted 
multimodal features and input them into a fully 
connected neural network without involving 
deep feature extraction or attention 
mechanisms. Deep forest without attention 
mechanism only used the cascaded forest 
structure for regression, removing the proposed 
MAFF module. To comprehensively quantify the 
model performance, this study adopted four 
metrics. Mean squared error (MSE) was applied 
to measure the average of the squared 
differences between predicted values and true 
values, reflecting the overall error level of the 
model. Root mean square error (RMSE) was the 
square root of MSE, which was more sensitive to 
outliers and had the same unit as the original 
data. The mean absolute error (MAE) was the 
average of the absolute differences between 
predicted values and true values, reflecting the 
actual magnitude of prediction deviations. 
Coefficient of determination (R²) was used to 
evaluate the model’s ability to explain the 
variability of data with the values closer to 1 
indicating better fitting performance. 
 
 

Results and discussion 
 

The prediction performance of valence and 
arousal across different datasets demonstrated 
that on the DEAP dataset, the proposed method 
achieved the best results for both emotional 
dimensions. Specifically, the MSE for valence was 
0.0410, significantly lower than those of single-

modality EEG (0.0653) and ECG (0.0721). For 
arousal, the MSE was 0.0380, also outperforming 
EEG (0.0687) and ECG (0.0745). Furthermore, the 
R² scores reached 0.81 and 0.83 for valence and 
arousal, respectively, indicating a high level of 
predictive accuracy. Compared with multimodal 
fusion methods without attention mechanisms, 
the proposed multi-source attention mechanism 
substantially enhanced the model's ability to 
integrate multimodal information, resulting in 
more accurate emotion prediction. On the 
PMEmo dataset, the proposed approach also 
demonstrated superior performance. The MSE 
for valence was 0.0380 with an R² of 0.84, while, 
for arousal, the MSE was 0.0361 with an R² of 
0.85. In contrast, single-modality approaches 
performed significantly worse with ECG alone 
yielding an MSE of 0.0783 in arousal prediction, 
which was nearly twice that of the proposed 
method (Figure 1). 
 
To further verify the statistical significance of the 
above performance improvements, this study 
conducted paired-samples t-tests on the results 
of 10-fold cross-validation. The results showed 
that the proposed method demonstrated 
significant performance improvement compared 
to single-modal methods of EEG, ECG, and the 
traditional SVM model (P < 0.001). More 
importantly, in the comparison verifying the 
effectiveness of the MAFF mechanism, the 
proposed method was significantly better than 
multimodal fusion without an attention 
mechanism in both valence dimension (P < 0.01) 
and the arousal dimension (P < 0.001) (Table 1). 
The result statistically confirmed that introducing 
the GRU-based dynamic attention mechanism 
could    significantly    reduce    prediction    errors, 
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Figure 1. The potency and wake-up prediction performance of different datasets. (a) the potency prediction of DEAP dataset. (b) wake-up 
prediction of DEAP dataset. (c) titer prediction of PMEmo dataset. (d) PMEmo dataset wake-up prediction. (Note: the values of the left vertical axis 
corresponded to the values of RMSE, MAE, and R2). 

 
 
rather than merely random fluctuations, thereby 
demonstrating the core contribution of the MAFF 
module in capturing cross-modal dynamic 
correlations. 
 
A comparison of the individual prediction 
performance across different modalities showed 
that there were clear differences in the modeling 
capabilities of each modality when used 
independently in the DEAP dataset. The EEG 
modality achieved the lowest MSE in both 
valence and arousal dimensions with values of 
0.0653 and 0.0687, respectively, resulting in an 
average MSE of 0.0670. The results indicated that 

the spatiotemporal features extracted from EEG 
signals provided strong discriminative power for 
emotion estimation. In contrast, the EDA 
modality showed the weakest performance with 
an average MSE of 0.0798, which might be 
attributed to its relatively low feature 
dimensionality and limited ability to capture the 
complexity of emotional states. On the PMEmo 
dataset, a similar trend was observed, where EEG 
again outperformed the other modalities, 
achieving the lowest average MSE of 0.0715, 
which further confirmed the robustness and 
generalizability of EEG features across datasets 
(Figure 2). Other modalities such as ECG and EMG 
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Figure 2. Comparison of individual prediction performance of different modes. (a) DEAP dataset. (b) PMEmo dataset. 

 
 
showed comparable performance in both 
datasets, indicating their potential in predicting 
emotion regulation states, though still falling 
short of EEG in predictive accuracy. 
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Figure 3. Comparison of different feature selection strategies for 
multimodal fusion. 

 
 
A comparison of different feature selection 
strategies for multimodal fusion showed that the 
proposed method that combined an enhanced 
deep forest architecture with MAFF achieved 
significant improvements in feature selection 
performance. On the DEAP dataset, the MSE for 
valence and arousal dimensions reached 0.0410 
and 0.0380, respectively, substantially 
outperforming traditional approaches such as 

principal component analysis (PCA) and mutual 
information-based selection. Compared to the 
baseline model without any feature selection 
strategy, the proposed method reduced MSE by 
approximately 24% in the valence dimension and 
26% in the arousal dimension (Figure 3). These 
results demonstrated the effectiveness of the 
joint deep forest-MAFF approach in enhancing 
feature relevance and model generalization in 
multimodal emotional state prediction. The 
MAFF played a crucial role in feature fusion. After 
integrating MAFF into the system, the MSE for 
both valence and arousal significantly decreased 
on the DEAP and PMEmo datasets (Figure 4). 
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Figure 4. MAFF contribution analysis. 
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Figure 5. The influence of transfer learning strategy on the generalization performance of the model. (a) PMEmo dataset. (b) DEAP dataset. 

 
 
The impact of transfer learning on model 
generalization showed that, when using PMEmo 
as the test dataset, the model being trained 
solely on DEAP without transfer learning yielded 
MSE of 0.0458 for valence and 0.0423 for arousal, 
significantly higher than the baseline 
performance achieved through direct training on 
the target dataset. After applying transfer 
learning with fine-tuning, the MSE dropped to 
0.0380 and 0.0361, outperforming the models 
trained directly on PMEmo. The results indicated 
that the transfer strategy effectively enhanced 
the model's adaptability to new data domains. 
Similarly, in evaluations using DEAP as the test 
set, models transfer from PMEmo and fine-tuned 
showed improved performance. The valence and 
arousal MSE reduced from 0.0443 and 0.0415 to 
0.0415 and 0.0387, respectively, approaching or 
even matching the performance of models 
trained directly on DEAP (Figure 5). 
 
Model training time and complexity comparison 
demonstrated that the proposed model 
combined deep forest and MAFF as a complete 
system including feature extraction and fusion 
modules with the parameter quantity covering 
the entire network, while GBDT ensemble model 
played as the independent baseline model using 
only GBDT. Although the proposed method 
involved a larger number of parameters and 
longer training time compared to traditional 
models with 3.8 million parameters and 3.6 

minutes of training, it maintained a reasonable 
inference time of 15.8 milliseconds per sample 
(Figure 6). While ensuring high prediction 
accuracy, the system also demonstrated 
balanced computational efficiency, highlighting 
its potential for real-time applications. 
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Figure 6. Comparison of model training time and complexity. (Note: 
The ordinate "Value" corresponded to the different measurement 
units with the parameter quantity unit as millions (m), the training 
time unit as minutes (min), and the reasoning time unit as 
milliseconds per sample (ms/sample). 

 
 

Conclusion 
 
This study proposed a multimodal physiological 
signal fusion-based system for evaluating the 
effects of music-induced emotion regulation. The 
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framework integrated EEG, ECG, EDA, and EMG 
data to provide an objective assessment. A 
combination of temporal convolutional 
networks, phase locking values, adaptive heart 
rate algorithms, and multi-source attention 
mechanisms was employed for efficient feature 
extraction and fusion. The results showed that 
the proposed method significantly outperformed 
traditional approaches in predicting valence and 
arousal, demonstrating strong generalization 
capability. Despite limitations such as dataset 
discrepancies and reduced performance in 
extreme emotion recognition, future work might 
incorporate behavioral data and explore 
lightweight deployment strategies to extend its 
application potential in mental health field. 
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