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Music intervention has been widely recognized as an effective means of emotional regulation for mental health.
However, existing evaluation methods mainly rely on subjective self-reports, lacking objectivity and real-time
tracking capabilities. To address this limitation, this study proposed a quantitative evaluation system for music-
induced emotional regulation effects based on the fusion of multimodal physiological signal features, which
addressed the limitations of traditional subjective questionnaires by constructing an objective assessment
framework using multimodal physiological responses. The system synchronously collected four types of
physiological signals including electroencephalogram (EEG), electrocardiogram (ECG), electrodermal activity
(EDA), and electromyography (EMG). The study also applied an improved deep forest algorithm for feature
selection and dimensionality reduction. A temporal convolutional network (TCN) was employed to extract
spatiotemporal features from EEG signals, while phase locking value (PLV) was used to quantify functional
connectivity between brain regions. For ECG, an adaptive heartbeat segmentation algorithm was developed to
enhance the robustness of heart rate variability (HRV) features. A novel multi-source attentional feature fusion
(MAFF) mechanism was introduced to learn dynamic cross-modal feature weights using a gated recurrent unit
(GRU), enabling optimized multimodal feature integration. A regression estimator based on a gradient boosting
decision tree (GBDT) was constructed within a valence-arousal dimensional emotion model and evaluated using
transfer learning on the database for emotion analysis using physiological signals (DEAP) and PMEmo datasets.
The results showed that the proposed system achieved mean squared error (MSE) of 0.0410 (valence) and 0.0380
(arousal) with R? values of 0.81 and 0.83 respectively on the DEAP dataset, significantly outperforming unimodal
approaches. The MAFF mechanism reduced the arousal MSE from 0.0462 to 0.0380, representing a 17.8%
improvement. After fine-tuning on the PMEmo dataset via transfer learning, the model achieved further MSE
reductions to 0.0380 (valence) and 0.0361 (arousal), demonstrating strong generalization and robustness across
datasets. By bridging the gap between physiological signals and emotional states, this study provided a reliable
objective quantitative benchmark for music therapy and offered a promising technical reference for future
affective computing research in mental health care.
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Introduction problems have become a major factor affecting
mental health and quality of life. Effectively
In today’s rapidly evolving society, emotional assessing and regulating individual emotional
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states has emerged as a key research focus across
psychology, neuroscience, and artificial
intelligence (Al). Music as a unique form of art
has been widely recognized for its role in emotion
induction and regulation [1, 2]. In recent years,
music-based interventions have been
increasingly applied in psychotherapy, emotion
management, and health promotion,
demonstrating significant potential as a non-
pharmacological approach [3]. However, current
evaluation methods for music-induced emotional
regulation rely heavily on subjective
questionnaires or interviews. These methods are
often biased and inconsistent, making it difficult
to achieve objective, continuous, and
personalized tracking of emotional changes [4].

With the continuous integration of Al and
affective computing, multimodal emotion
recognition has emerged as a prominent
research focus. Udahemuka et al. highlighted
that visual cues, acoustic features, and
physiological signals each possessed distinct
advantages in emotional expression. The
integration of these factors effectively overcame
the limitations of single-modal approaches in
emotion recognition [5]. Kim et al. proposed a
dual-function music classification system based
on physiological signal features by analyzing
parameters of electroencephalogram (EEG) and
electrodermal activity (EDA). The system enabled
automatic recognition and recommendation of
music emotion types [6]. However, current
studies still mainly focus on static emotion
classification and lack continuous modeling and
evaluation of the emotion regulation process. In
the area of music and physiological signal
integration, Yin et al. proposed a large-scale
emotion recognition framework that combined
music content with EDA signals. The research
employed deep neural networks to jointly model
musical audio features and physiological
response patterns, exploring the mapping
between emotional labels and multidimensional
feature spaces [7]. However, the framework
lacked comprehensive modeling of other
physiological channels such as EEG and
electrocardiogram (ECG). Focusing on the key
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technologies underpinning multimodal emotion
recognition, Zhu et al. provided a systematic
review of current deep learning models, feature
selection mechanisms, and fusion strategies used
in emotion analysis and emphasized that the
major challenges in multimodal fusion included
inter-modal  inconsistency,  synchronization
discrepancies, and redundancy in high-
dimensional feature spaces [8]. In the field of
multi-source physiological signal fusion, Zhu et al.
proposed the multi-language font generation
network (MF-Net) model, which integrated EEG,
ECG, and electromyography (EMG) signals using
residual structures and attention mechanisms to
achieve efficient fusion of emotional features [9].
However, the model still has room for
improvement in temporal dependency modeling
and feature selection. Additionally, Du et al.
conducted an empirical study on emotional
responses induced by traditional Chinese-style
music and developed a hybrid model combining
one-dimensional convolutional neural network
(CNN) and bidirectional long short-term memory
network (Bi-LSTM) to analyze EEG data from
university students. The model achieved dual
classification in the valence and arousal
dimensions, demonstrating the influence of
musical cultural context on the transferability of
emotion recognition models [10]. In the context
of attention-based fusion, Ghaleb et al. explored
joint modeling strategies for audio and visual
cues and introduced attention mechanisms to
enhance the model’s sensitivity to emotionally
salient segments [11]. Although their study
focused on audiovisual modalities, its proposal of
temporal selective modeling offered valuable
insights for dynamically capturing salient
features in physiological signals. Similarly, Yang
et al. developed a mobile-based emotion
recognition method that integrated behavioral
data with physiological signals. Their work
demonstrated the potential of lightweight deep
models for use in wearable devices, highlighting
the need to balance computational efficiency
with model performance in future emotion
recognition systems [12]. In terms of cross-modal
coordination strategies for multimodal emotion
recognition, Vamsidhar et al. proposed a
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hierarchical cross-modal attention mechanism.
Through dual-channel audio pathway modeling,
the approach achieved fine-grained emotional
semantic extraction and improved semantic
alignment across modalities [13]. Although the
work was primarily applied to affective
computing tasks, the proposed mechanism
provided theoretical basis and feasible technical
approach for addressing the heterogeneity of
multi-source physiological signals. Although
traditional emotion recognition methods have
achieved certain progress using unimodal signals,
they still face limitations due to the complexity of
emotional responses and individual variability.
The accuracy and robustness of these
approaches remain to be significantly improved
[14].

Compared to unimodal signals, multimodal
physiological signals offer stronger
representational capacity in terms of information
richness and response specificity. EEG captures
real-time cortical activity, making it suitable for
tracking the spatiotemporal dynamics of
emotional states. Heart rate variability (HRV)
derived from ECG reflects the autonomic nervous
system’s response to emotional stimuli. EDA as a
direct indicator of sympathetic nervous activity is
commonly used to assess emotional arousal
levels [15]. Surface EMG measures facial or bodily
muscle activity, which is closely linked to
emotional experience [16]. Therefore,
integrating features from multiple physiological
sources enables multi-perspective modeling and
more accurate evaluation of music-induced
emotional regulation. However, one of the key
challenges in multimodal fusion lies in the
heterogeneity across signal channels including
differences in sampling rates, signal patterns,
response latencies, and noise distributions [17].
Traditional fusion strategies often fail to
effectively capture inter-modal relationships,
leading to feature redundancy or information
loss, which limits both the expressiveness and
generalization capacity of the model [18].

This study aimed to address the limitations of
traditional emotional assessment methods by
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developing a quantitative evaluation system for
music-induced emotional regulation effects
based on multimodal physiological signal fusion
to provide an objective, accurate, and
personalized description of emotional state
changes. The study adopted a temporal
convolutional network (TCN) to extract
spatiotemporal features, which introduced a
novel multi-source attentional feature fusion
(MAFF) mechanism, leveraged gated recurrent
units (GRUs) to dynamically learn cross-modal
weights, and constructed a regression model
combined with a gradient boosting decision tree
(GBDT). This study provided a reliable objective
guantitative benchmark for the evaluation of
music therapy effects and offered a robust
methodological framework for solving the
problem of multi-source heterogeneous data
fusion in affective computing, thereby promoting
its practical application in the field of mental
health monitoring.

Materials and methods

Data resources and preprocessing

The public accessible Database for Emotion
Analysis using Physiological signals (DEAP)
(https://www.eecs.gmul.ac.uk/mmv/datasets/d
eap/) and PMEmo (http://huisblog.cn/PMEmo/)
were employed in this research as the data
resources. DEAP dataset was used for proposed
model construction [19], while PMEmo dataset
was used to verify the generalization ability of the
proposed model when dealing with single-modal
and cross-dataset scenarios [20]. All data were
uniformly processed using a fifth-order zero-
phase bandpass filter. The EEG, ECG, EMG signals
were filtered within 1 - 45 Hz, 0.5 - 40 Hz, 20 - 150
Hz, respectively, while the EDA signals
underwent high-pass filtering at 0.05 Hz to
remove baseline drift [21]. For noise reduction,
independent component analysis (ICA) was
applied to EEG channels to eliminate artifacts
caused by eye movements, blinks, and muscle
activity. ECG signals were processed using an
adaptive threshold detection algorithm to extract
the R-peak sequence and remove motion
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artifacts, providing a foundation for subsequent
heart rate variability analysis. For time
synchronization, the system employed a trigger
pulse-based marking mechanism. All modal
signals were aligned at event trigger points and
segmented accordingly. Each segment
corresponded to a 30-second music excerpt,
forming a data window for unified feature
extraction. Additionally, all signal samples were
normalized using the z-score method to ensure
comparability of amplitude features across
different modalities as follows [22].

Z; ="+ (1)

where x; was the sample value of the original
signal. u was the mean value of the signal
channel. o was the standard deviation. Z; was
the normalized value. To minimize the impact of
invalid samples on model performance, the
system set artifact detection thresholds. If more
than 25% of data points in a segment exceeded
physiologically plausible limits such as EEG
amplitude beyond + 100 pV or abnormal ECG
rhythm, the segment was automatically marked
as invalid and excluded. During EDA
preprocessing, transient changes in skin
conductance were extracted using a peak
detection algorithm, and their rates of change
were calculated via a sliding window approach.
For EMG signals, after bandpass filtering,
rectification and moving average smoothing
were applied to enhance the distinguishability of
muscle contraction activity. To facilitate unified
feature extraction, multimodal signals within
each time window were converted into a
standardized data frame structure that contained
four types of synchronized time-series data with
the sampling frequency of all signals unified to
256 Hz. For EEG signals, the data structure
included raw signals from 32 channels and was
formatted as [Nsgmpies, 32] - ECG signals were
recorded with a single lead and formatted as
[Msampies: 1] - EDA was also recorded with a
single channel and formatted as [Ngampies, 1] -
EMG signals were collected from 8 channels on
the face and upper limbs to capture muscle
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activity with a data format of [nggmpies, 8] This
unified matrix representation ensured that the
subsequent feature extraction module could
efficiently process multi-source heterogeneous
data.

Feature extraction

To comprehensively evaluate the regulatory
effects of music stimuli on emotions, this study
designed a customized multimodal physiological
feature extraction method, which encompassed
time-domain, frequency-domain, and
spatiotemporal dynamic features combined with
neural network architectures to enhance the
representation of higher-order features. The
proposed method constructed separate feature
extraction pipelines for EEG, ECG, EDA, and EMG
signals, which were ultimately integrated into a
unified multimodal fusion module, serving as the
input for subsequent modeling and evaluation. In
EEG signal processing, temporal convolutional
network (TCN) was used to extract its temporal
and spatial dynamic characteristics using causal
convolution structure to maintain sequence
order and improving deep feature transmission
ability through residual connection. Letting the
EEG signal segment be the matrix Xz € RT*C,
where T was the number of time steps and C
was the number of channels, the characteristic
expression of TCN extraction was shown below.

H® = ReLUW® « HI-D 4 p) (2)

where HO = X,... W® was the convolution
kernel of the [-th layer. * was one-dimensional
convolution operation. ReLU was the activation
function. b was the bias term. TCN structure
effectively captured the time delay correlation
and, at the same time, had a longer receptive
field to describe the dynamic adjustment process
of music to EEG [23]. Meanwhile, to model the
functional connection between EEG multi-brain
regions, this study calculated the degree of phase
synchronization  between  channels and
quantified the coupling relationship between
channels by using phase locking value (PLV).
Letting the instantaneous phases of two EEG
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channel signals obtained by Hilbert transform be
¢, (t) and ¢, (t), respectively, the definition of
PLV was then as follows.

PLV = | 3N, e/ (#1(0-02(0) (3)

where j was imaginary unit. N was the length of
time window. The closer the PLV value was to 1,
the stronger the phase synchronization between
the two brain regions, reflecting the neural
coupling characteristics related to emotional
processing. For ECG signal, to extract the
characteristics of heart rate variability (HRV), an
adaptive heartbeat detection algorithm was
designed to identify the peak value of R wave
based on the change of waveform slope. Letting
R-R interval sequence be {RR{,RR,,--,RR,},
the basic time-domain characteristics of HRV
including average RR interval RR and standard
deviation SDNN were shown as follows.

RR = -3, RR; (4)

SDNN=\/$ " (RR; — RR)? (5)

In addition, frequency domain features such as
low-frequency power and high-frequency power
were extracted, and the RR interval sequence
was transformed into frequency domain by fast
Fourier transform (FFT) to calculate its power
spectral density. In EDA signal processing, the
study focused on two indicators including rapid
skin conductance response (SCR) and slowly
changing skin conductance level (SCL) [24]. SCR
was composed of discrete peak response of skin
electricity, which usually reflected the
instantaneous activation state of autonomic
nervous system. Letting the peak response
sequence be {p;,p,,**, Pm}, the SCR frequency
per unit time was then defined below.

m

SCRfreq = At (6)

where At was the length of observation time. SCL
was the average value of the signal in the
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window, which was used to measure the degree
of baseline activation. EMG signal characteristics
were mainly based on the amplitude and power
characteristics of muscle potential, which was full
wave rectified and smoothed by moving average.
Letting the processed EMG signal be s(t), the
root mean square (RMS) was defined below.

RMS = [T, s(t)? (7)

Meanwhile, to enhance the time-frequency
characterization of muscle activity patterns,
short-time Fourier transform (STFT) was applied
to extract the temporal evolution of energy
distribution [25].

The Feature Dimension Reduction and Selection
The layered structure of deep forest was
introduced to perform multi-layer nonlinear
mapping and screening on the original feature
matrix. Letting the initial input feature be X €
R™ % where n was the number of samples and
d was the feature dimension, the output feature
representation of the [-th layer was shown as
follows.

H® = FOHW-D) (8)

where F® was the I -layer deep forest
transformation operation. H©® = X. Each layer
of deep forest included several decision tree sub-
models, whose structure dynamically
determined the number of layers and forest
depth  through  cross-validation, learned
nonlinear feature combinations layer by layer
and output class confidence vectors. On the
candidate feature set of deep forest output,
mutual information was further introduced as a
feature selection criterion to measure the
correlation between individual features and
emotional tags. Letting the characteristic variable
be X; and the label variable be Y, the mutual
information between them was then defined
below.

I(X5Y) = Sxex, Zyer PO, Ylog Gy (9)
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where p(x,y) was a joint probability
distribution. p(x) and p(y) were edge
distribution functions, respectively. The greater
the mutual information, the stronger the
predictive power of features on labels. If the
threshold was set as €, only the values that
satisfied I(X;;Y) > 6 features were kept and
used for subsequent modeling. In addition to the
static selection mechanism, to enhance the
cooperative expression ability of cross-modal
features, this study further introduced the neural
attention mechanism and dynamically learned
the importance weight of each modal feature
channel through the time memory ability of the
gated cycle unit [26]. Letting the input be the
multi-modal fusion feature sequence Z =
{z,,2,,++,zr}, the GRU unit state update of each
step was shown as follows.

. = oW,z + Uyhe_q) (10)
z; = oW,z + Uyhe_q) (12)
he = tanh(Wyz, + Up(r; © he—y))  (12)
he=(1—-2)Qheey +2, O hy (13)

where 1; and z; were reset gate and update gate.
(® was Hadamard product. W and U were
trainable weight matrices. By finally hiding the
attention weight vector a of state hy, the
dynamic importance of each channel could be
calculated as follows.

exp (WThi)

I T 14
T_iexp wThy)) (14)

a; =

where w was a trainable parameter vector. a;
was the contribution degree of the i-th channel
in the whole sequence.

Regression Model Construction

After feature dimensionality reduction via deep
forest and dynamic fusion through the MAFF
mechanism, a regression estimator based on
gradient boosting decision tree (GBDT) was
constructed to map the optimized fused features
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to the two-dimensional valence-arousal
emotional space. As a powerful ensemble
learning algorithm, GBDT was employed as the
final regression predictor in this framework to
achieve quantitative output of music-induced
emotional regulation effects. According to
Russell’s circumplex model of affect [27], the
valence dimension described the pleasantness of
emotions, ranging from negative such as sadness
and stress to positive such as happiness and
relaxation. The arousal dimension reflected the
intensity of physiological and psychological
activation, ranging from low arousal such as
calmness and drowsiness to high arousal such as
excitement and tension. These two orthogonal
dimensions formed a continuous space, which
could effectively map and quantify the complex
emotional states induced by music. Letting the
training sample set be {(x;, v;)}\,, where x; €
R% was the multimodal fusion feature vector of
the i -th sample, and y; € R? was the
corresponding emotion tag vector including two
dimensions of potency and arousal, the GBDT
model constructed the final prediction function
by superimposing M -tree learning tree f,, as
follows.

Vi = Xm=1fm (), fn € F (15)
where F was the function space of the regression
tree. The goal of the model was to minimize the
loss function L, and the square error loss was
usually selected as follows.

L=YN lly; — 92 (16)

During the training process, each iteration

updated the model by fitting the current residual

- (m)

; as follows.

(m) 5(m-1)

i =y =9 (17)
fn = argmin B (™~ FO))? (18)
5 =9+ nfim(x) (19)
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where 1 was the learning rate, which was used to
control the contribution of each tree to the
overall model and prevent over-fitting. Aiming at
multi-dimensional emotional output, the model
adopted multi-task learning structure, optimized
titer and arousal as two regression tasks, and
captured the potential correlation between them
by using shared tree structure. The loss function
was extended to the weighted sum of two-
dimensional outputs as below.

L = Zé\IZI(a”ylpalence _ ygmlencenz + (1 _

arousal __ garousal ”2)
i

a) [[yfrowt -3 (20)
where «a € [0,1] was a hyperparameter for
adjusting the weights of two tasks. At the input
end of the model, the multi-modal feature
vectors were extracted and screened, and the
features were normalized by the system to
ensure that all input variables were at similar
numerical scales to avoid unstable training
caused by differences in feature scales. The
minimum-maximum normalization method was
adopted in the normalization process as follows.

norm _ __ Xi—min (X)
Xi o max(X)—min (X) (21)

where min (X) and max(X) were the minimum
and maximum values of the characteristic
column, respectively. The training of GBDT model
adopted greedy segmentation strategy layer by
layer. Aiming at the training samples of current
nodes, the decline of loss function was
maximized by selecting the optimal features and
segmentation points. The goal of node division
was to maximize information gain as defined
below.

AL = Lparent - (Lleft + Lright) (22)
where Lygrent, Liere and Lyigpe were the square
error losses of the parent node and the left and
right child nodes, respectively. By traversing all
possible segmentation points and features, the
partition scheme that maximized AL was
selected. To prevent over-fitting, regularization
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terms were introduced into the model including
the maximum depth limit of the tree, the
minimum sample size limit of leaf nodes, and L2
regularization of leaf weights as shown below.

Q(F) = yT+35A 5], w} (23)

where T was the number of leaf nodes. w; was
the weight of the j-th leaf. y and A1 were
regularization hyperparameters to adjust the
complexity of the model respectively.
Experimental and implementation
protocol

All experiments in this study were conducted in a
unified computing environment to ensure the
fairness of results. The hardware platform was
equipped with an Intel Core i9-10900K CPU and
an NVIDIA GeForce RTX 3090 GPU (24 GB video
memory). The software environment was based
on the 64-bit Windows 10 operating system using
Python 3.8 programming language. The deep
learning model was built on the PyTorch 1.10
framework, and GBDT was implemented using
the Scikit-learn 1.0 library (https://scikit-
learn.org). To evaluate the model performance, a
10-fold cross-validation strategy was adopted.
The dataset was randomly divided into a training
set (80%), a validation set (10%), and a test set
(10%). To verify the superiority of the proposed
method, traditional support vector machine
(SVM), shallow multimodal fusion models, and a
deep forest model without an attention
mechanism were selected as comparative
baselines in the study. All comparative
experiments used the same preprocessed data
and evaluation metrics.

setup

Experimental comparison model and evaluation
index

The baseline models and performance evaluation
metrics for comparative verification were first
clarified. To verify the advancement of the

proposed method, it was compared with
traditional  single-modal model, shallow
multimodal fusion model, and deep forest

without attention mechanism. Traditional single-
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Table 1. Paired t-test statistical significance analysis results of proposed method and other baseline models on DEAP dataset.

Comparison Valence Awakening degree

t-value P value t-value P value

Proposed method vs. Single modality EEG -12.45 <0.001 -14.21 <0.001
Proposed method vs. Single modality ECG -15.82 <0.001 -16.03 <0.001
Proposed method vs. SVM baseline -18.33 <0.001 -19.45 <0.001
Proposed method vs. Multimodal (w/o attention) -4.12 <0.01 -5.67 <0.001

Note: a negative t-value indicated that the error of the proposed method was significantly lower than that of the comparative model.

modal model used support vector regression
(SVR) for EEG and ECG data, respectively. This
model is implemented based on the Scikit-learn
machine learning library. Shallow multimodal
fusion model directly concatenated the extracted
multimodal features and input them into a fully
connected neural network without involving
deep  feature extraction or attention
mechanisms. Deep forest without attention
mechanism only used the cascaded forest
structure for regression, removing the proposed
MAFF module. To comprehensively quantify the
model performance, this study adopted four
metrics. Mean squared error (MSE) was applied
to measure the average of the squared
differences between predicted values and true
values, reflecting the overall error level of the
model. Root mean square error (RMSE) was the
square root of MSE, which was more sensitive to
outliers and had the same unit as the original
data. The mean absolute error (MAE) was the
average of the absolute differences between
predicted values and true values, reflecting the
actual magnitude of prediction deviations.
Coefficient of determination (R?) was used to
evaluate the model’s ability to explain the
variability of data with the values closer to 1
indicating better fitting performance.

Results and discussion

The prediction performance of valence and
arousal across different datasets demonstrated
that on the DEAP dataset, the proposed method
achieved the best results for both emotional
dimensions. Specifically, the MSE for valence was
0.0410, significantly lower than those of single-
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modality EEG (0.0653) and ECG (0.0721). For
arousal, the MSE was 0.0380, also outperforming
EEG (0.0687) and ECG (0.0745). Furthermore, the
R? scores reached 0.81 and 0.83 for valence and
arousal, respectively, indicating a high level of
predictive accuracy. Compared with multimodal
fusion methods without attention mechanismes,
the proposed multi-source attention mechanism
substantially enhanced the model's ability to
integrate multimodal information, resulting in
more accurate emotion prediction. On the
PMEmo dataset, the proposed approach also
demonstrated superior performance. The MSE
for valence was 0.0380 with an R? of 0.84, while,
for arousal, the MSE was 0.0361 with an R? of
0.85. In contrast, single-modality approaches
performed significantly worse with ECG alone
yielding an MSE of 0.0783 in arousal prediction,
which was nearly twice that of the proposed
method (Figure 1).

To further verify the statistical significance of the
above performance improvements, this study
conducted paired-samples t-tests on the results
of 10-fold cross-validation. The results showed
that the proposed method demonstrated
significant performance improvement compared
to single-modal methods of EEG, ECG, and the
traditional SVM model (P < 0.001). More
importantly, in the comparison verifying the
effectiveness of the MAFF mechanism, the
proposed method was significantly better than
multimodal fusion without an attention
mechanism in both valence dimension (P < 0.01)
and the arousal dimension (P < 0.001) (Table 1).
The result statistically confirmed that introducing
the GRU-based dynamic attention mechanism
could significantly reduce prediction errors,
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Figure 1. The potency and wake-up prediction performance of different datasets. (a) the potency prediction of DEAP dataset. (b) wake-up
prediction of DEAP dataset. (c) titer prediction of PMEmo dataset. (d) PMEmo dataset wake-up prediction. (Note: the values of the left vertical axis

corresponded to the values of RMSE, MAE, and R?).

rather than merely random fluctuations, thereby
demonstrating the core contribution of the MAFF

module in capturing cross-modal dynamic
correlations.
A comparison of the individual prediction

performance across different modalities showed
that there were clear differences in the modeling
capabilities of each modality when used
independently in the DEAP dataset. The EEG
modality achieved the lowest MSE in both
valence and arousal dimensions with values of
0.0653 and 0.0687, respectively, resulting in an
average MSE of 0.0670. The results indicated that
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the spatiotemporal features extracted from EEG
signals provided strong discriminative power for
emotion estimation. In contrast, the EDA
modality showed the weakest performance with
an average MSE of 0.0798, which might be
attributed to its relatively low feature
dimensionality and limited ability to capture the
complexity of emotional states. On the PMEmo
dataset, a similar trend was observed, where EEG
again outperformed the other modalities,
achieving the lowest average MSE of 0.0715,
which further confirmed the robustness and
generalizability of EEG features across datasets
(Figure 2). Other modalities such as ECG and EMG
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Figure 2. Comparison of individual prediction performance of different modes. (a) DEAP dataset. (b) PMEmo dataset.

showed comparable performance in both
datasets, indicating their potential in predicting
emotion regulation states, though still falling
short of EEG in predictive accuracy.

0.0387 0.0361
0.0507
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MSE
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No feature selection Traditional PCA

+deep forest
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+MAFF

—_ o o <
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Figure 3. Comparison of different feature selection strategies for
multimodal fusion.

A comparison of different feature selection
strategies for multimodal fusion showed that the
proposed method that combined an enhanced
deep forest architecture with MAFF achieved
significant improvements in feature selection
performance. On the DEAP dataset, the MSE for
valence and arousal dimensions reached 0.0410
and 0.0380, respectively, substantially
outperforming traditional approaches such as
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principal component analysis (PCA) and mutual
information-based selection. Compared to the
baseline model without any feature selection
strategy, the proposed method reduced MSE by
approximately 24% in the valence dimension and
26% in the arousal dimension (Figure 3). These
results demonstrated the effectiveness of the
joint deep forest-MAFF approach in enhancing
feature relevance and model generalization in
multimodal emotional state prediction. The
MAFF played a crucial role in feature fusion. After
integrating MAFF into the system, the MSE for
both valence and arousal significantly decreased
on the DEAP and PMEmo datasets (Figure 4).

RXY] DEAP valence MSE

B DEAP arousal MSE
0.05 - [ 1PMEmo valence MSE
Bl PMEmo arousal MSE
0.04
m 0.03
7
=
0.02
0.01
0.00

Use of MAFF

Figure 4. MAFF contribution analysis.
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Figure 5. The influence of transfer learning strategy on the generalization performance of the model. (a) PMEmo dataset. (b) DEAP dataset.

The impact of transfer learning on model
generalization showed that, when using PMEmo
as the test dataset, the model being trained
solely on DEAP without transfer learning yielded
MSE of 0.0458 for valence and 0.0423 for arousal,
significantly  higher than the baseline
performance achieved through direct training on
the target dataset. After applying transfer
learning with fine-tuning, the MSE dropped to
0.0380 and 0.0361, outperforming the models
trained directly on PMEmo. The results indicated
that the transfer strategy effectively enhanced
the model's adaptability to new data domains.
Similarly, in evaluations using DEAP as the test
set, models transfer from PMEmo and fine-tuned
showed improved performance. The valence and
arousal MSE reduced from 0.0443 and 0.0415 to
0.0415 and 0.0387, respectively, approaching or
even matching the performance of models
trained directly on DEAP (Figure 5).

Model training time and complexity comparison
demonstrated that the proposed model
combined deep forest and MAFF as a complete
system including feature extraction and fusion
modules with the parameter quantity covering
the entire network, while GBDT ensemble model
played as the independent baseline model using
only GBDT. Although the proposed method
involved a larger number of parameters and
longer training time compared to traditional
models with 3.8 million parameters and 3.6
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minutes of training, it maintained a reasonable
inference time of 15.8 milliseconds per sample
(Figure 6). While ensuring high prediction
accuracy, the system also demonstrated
balanced computational efficiency, highlighting
its potential for real-time applications.

= Parameter count (M)
® Training time (min)
144 4 Inference time (ms/sample)

Value
oo
1

1]

T
GBDT ensemble

Traditional Shallow Proposed: deep
unimodal model multimodal fusion forest + MAFF model
(SVM) model
Model type

Figure 6. Comparison of model training time and complexity. (Note:
The ordinate "Value" corresponded to the different measurement
units with the parameter quantity unit as millions (m), the training
time unit as minutes (min), and the reasoning time unit as
milliseconds per sample (ms/sample).

Conclusion

This study proposed a multimodal physiological
signal fusion-based system for evaluating the
effects of music-induced emotion regulation. The
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framework integrated EEG, ECG, EDA, and EMG
data to provide an objective assessment. A
combination of temporal convolutional
networks, phase locking values, adaptive heart
rate algorithms, and multi-source attention
mechanisms was employed for efficient feature
extraction and fusion. The results showed that
the proposed method significantly outperformed
traditional approaches in predicting valence and
arousal, demonstrating strong generalization
capability. Despite limitations such as dataset
discrepancies and reduced performance in
extreme emotion recognition, future work might
incorporate behavioral data and explore
lightweight deployment strategies to extend its
application potential in mental health field.
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